Increase the Accuracy of Machine Learning with TigerGraph

Machine Learning is being applied to a variety of use cases including fraud prevention, anti-money laundering (AML) and eCommerce product recommendation. As you apply machine learning to identify anomalous behavior such as finding fraudsters or money launderers, it is akin to finding needles in a massive haystack - companies must sort and make sense of massive amounts on data in order to find the "needles" or in this case, the fraudsters. 

In this paper we review a use case on how TigerGraph can train the machine for fraud detection with graph based features. This in turn makes the machine smarter and more successful in recognizing potential scam artists and fraudsters, enabling companies to find that needle in the haystack.  

Download the Solution Brief

Screen Shot 2018-05-24 at 2.54.53 PM.png

About TigerGraph

TigerGraph is the world’s first Real-Time Graph Analytics Platform powered by Native Parallel Graph (NPG) technology. TigerGraph fulfills the true promise and benefits of the graph platform by supporting real-time deep link analytics for enterprises with complex and colossal amounts of data. TigerGraph’s proven technology is used by customers including Alipay, VISA, SoftBank, State Grid Corporation of China, Wish and Elementum.

cropped-icon-512-1.png

TigerGraph
3 Twin Dolphin Drive, Suite 160
Redwood City, CA 94065

sales@tigergraph.com
www.tigergraph.com 

“TigerGraph's speed, scalability and graph model have enabled many applications for us that we previously thought were overly challenging."

Jack Xie

Head of Data at Wish.com