

Improving AML Detection and Investigation using Machine Learning and Graph Databases

Today's Speakers

David Ronald Product Marketing Director TigerGraph

Steven Fuller Senior Solutions Engineer TigerGraph

The United Nations Vienna 1988 Convention Article 3.1 defines **money laundering** as "the conversion or transfer of property, knowing that such property is derived from any offense(s), for the purpose of concealing or disguising the illicit origin of the property or of assisting any person who is involved in such offense(s) to evade the legal consequences of his actions".

Three stages of Money Laundering:

- Placement: Moving funds from direct association with crimes
- Layering: Disguising the trail to foil pursuit
- Integration: Making money available to criminals from what seem to be legitimate sources

https://www.unodc.org/unodc/en/money-laundering/overview.html

Total aggregated
US bank fines in 2020\$14.21BMost common violationAML breaches

https://finbold.com/bank-fines-2020/

Regulatory spending on compliance FCC programmes (BN)

AML Considerations

Not Small	UNODC: Money laundering is now estimated to be "2–5% of global GDP, or \$800B to \$2T in current USD" (>AAPL market cap)						
Not Just Banks	Entirely new counterparties now: Retail, casinos, real estate, human and drug trafficking, terrorists, cryptocurrencies, and other networks						
Not Just Risk Scoring	Investigations need deep and wide and fast network forensics: financial crime networks are evolving into advanced persistent threat systems						
Not Just KYC	Effective investigations also now need to avoid false positives: KNOW YOUR CUSTOMER'S CUSTOMER: KYC(C)						
Not Just Humans	Graph analytics, together with ML/AI and data science - with humans in the loop - together help investigators do even better						

Technology Use Cases

Business Cases

- Anti Money Laundering
- Internal Fraud Entitlements
- Credit Card & Transaction Fraud
- Identity Theft & Falsification
- Cyber Malware
- IoT & Asset Fraud
- Audit & Compliance
- Claim, Dispute Charges
- Law Enforcement Prosecution

Investigation - Visualization

- Advanced Visualization
- Dependency | Network Pathing | Routing | Complex Visualization
- Clustering & Community Detection
- Geospatial 'Network Mapping'
- Real Time Data IoT Systems
- Team-based Workbench & Investigation

ML and Analytics

- Patterns Recommendations
- What If Planning & Visibility
- Predictive & Analytics
- Scoring and Risk
- Audit & Compliance Historical
- Targeting Similarities
- Decision Tree Analytics

Limited Legacy Systems

H	CE	- ACT	IMI	ZE										About He	ip Perso	naiizat	ion 🕶	Regina
asi	hbo	ards	Cas	es Wor	k Items Re	search S	ettings	Policy M	anager				Sea	rdh			0	- 0
lol	tter	rs																
+		1.1.0	M-2		Trader Det	alle 💡												0
1			n-2	012	mades Det	ans •												6
R	iew I	(itter)			U	pdate Mo	re Action	s ••										
Ph	Cle	ents Age	65 an	d Over														
	Sik	2 Equ	ties: V ties: V	alue >20k & P alue >5k & Pr	hice > \$5 ice < \$5													
	Sik	3. Equ	ties Q	ty > 20k							• 1							
	Tra	des Wit	h Alert	1	·		<u> </u>						1	- 20 (of 48)	14 4		N.	Show Al
P	Un ivate	Review	ed Tra	0es	<u> </u>	Let I C							-	1 (-	-	
	Un	reviewe	5 witho	ut Alerts	unt	Rep Code	Symbol		Product Nam	e	B/S	Qty	Price	Amount	Commi	s/U	Discr	
1	٠	1	2	03832965	N. Dills	6365	10M	IBM CORP			0	50,000	\$100.00	\$5,000,000.00	\$5,000.00	5	NA	
3			5	04760C37	J. Kanorski	6345	FFR8X	FIDEUTY AC	MSOR FLOAT	ING RATE	0	10,000	\$9.00	\$90,000.00	\$.00	5	NA	
3				07495C37	C. Benigno	6001	KDHBX	SCUDDER 0	REMAN HIGH	RETURN	0	25	\$41.00	\$1,054.00	\$.00	5	NA	
				00037C37	M. Tanaka	A122	YH00	YAHOO INC			8	1,000	\$36.00	\$36,064.00	\$40.00	8	0E	
		Trade ID 205009 Trade Date			10/10/2012	Acct T)	rpe	Margin	Acct Deta	85	08032	CBZ	Acct Pr	ofile	00037	1027		
		Age		26	inv. Obj.	Growth	Occup	note	Financial A	Sec. Type		Equity		Interact	ions	View	CTFS	
		incom	•	67,000	Net Worth	1.0.0	Tax St	Mus		Rep Name		Penon	6, 300					
1	•			99997G27	A Castilla	6342	KORAX	SCUDDER	AROWTH FUNC	>	8	335	\$5.00	\$3,000.00	3.00	8	0E	
3	•			09409C27	H. Marcus	0770	PAL	LTD	MERICAN PAL	LADIUM	0	1,000	\$7,00	\$7,774.00	\$24.00	5	NA	
3				11315037	R. Sanchez	8222	KDHAX	SCUDDER 0	REMAN HIGH	RETURN	8	1	\$44.00	\$50.00	\$.00	8	NA	
)				14581037	J. Chung	A222	LTXX	LTX CORP			8	800	\$6.00	\$4,968.00	\$24.00	5	NA	
1				17835C37	H. Markman	8778	8U	BIG LOTS IN	ić.		8	6,000	\$11.00	\$68,912.00	\$.00	8	NA	
1				10910C37	J. Peck	A177	SBUX	STARBUCK	S CORP		8	100	\$55.00	\$5,501.00	\$24.00	8	NA	
3	٠			10990C37	L. Stock	A177	MMAM	MEDICAL M	AKEOVER COP	8P OF	8	1,000	\$10.00	\$424.00	\$24.00	5	NA	
-				15110037	J Peat	A222	POVN	PARACONF	NETWORKS IN	an .		1.500	\$3.45	\$5,125,00	\$24.00	8	NUL	

- No depth of context: Mules? Sometimes. Fraud rings? No.
- Heavy overhead in terms of integration, operations, human-in-the-loop investigations.
- Lack of speed, scale, insight into connected data.

Better Investigative Insights

• Actionable investigative insights obtained using machine learning and graph databases

Better Analytics Accuracy

Graph + machine learning + humans = improved accuracy of AML investigations

TIME

Benefits of AML Workbench

- Increase accuracy of alerts human and algorithms (eg, false positives)
- **Decrease false positives -** capture and incorporate human instincts and expertise (especially for expert users)
- Increase speed & efficiency more accurate and trusted outcomes (both automated & human)
- Improve operational efficiency reduce the level of effort needed to investigate alerts and create cases
- Adapt to changes add new alerts and rules to address new patterns
- **Continuous improvement** system can learn, adapt & get better over time

Introduction to Graph Databases

"Graph analysis is possibly the single most effective competitive differentiator for organizations pursuing datadriven operations and decisions after the design of data capture."

Six Types of Graph Analytics

Graph can be used to analyze all sorts of relationships across all kinds of systems even beyond process or beyond the confines of individual operational models.

Source: "Understanding When Graph Technologies Are Best for Your Business Use Case", Jim Hare et al, 2020

A Sample Graph

Graph databases consist of vertices and edges

- Vertices data entities
 - for example person, account, transaction
- Edges the relationships between those entities
 - for example person opens account, money moves from one account to another account

A graph stores the relationships between data entities - or can be used to uncover relationships between data entities

Why Graph Databases?

Feature	Design Difference	Benefit						
Deep-Link Pattern Discovery	 Native graph, for speed and efficiency 	 Uncovers hard-to-find patterns Operational, real-time analytics 						
Handling Massive Scale	 Distributed database architecture Massively parallel processing Compressed storage reduces footprint and messaging 	 Integrates all your data Automatic partitioning Complete data → better detection 						
In-Database Analytics	 GSQL: High-level yet Turing-complete language User-extensible graph algorithm library, runs in-database ACID (OLTP) & accumulators (OLAP) 	 Avoids transferring data Richer graph context In-place machine learning 						

Better AML with Graph

Richer, smarter connected data

• Uncover connections, break down silos

Deeper, more far-reaching questions

• Search far and wide faster and more easily

Enhance investigations with non-obvious information

• Connect SARs from prior investigations

Discover hidden behaviors and compare patterns

• Decide which investigations have a high probability of a successful outcome

Explainable results

- AI/ML-based results are credible and understood by humans
- Visual exploration

About TigerGraph

Connect Datasets & Pipelines

Friction-free scale out from GB to TB to PB with lowest cost of ownership

UNITEDHEALTH GROUP®

Customer 360 connecting 200+ datasets and pipelines

Fortune 50 Retailer

Item 360 for ecommerce across 100+ datasets

🚸 xandr 🅞 at&t

Identity graph connecting 50+ data pipelines

Analyze Connected Data

10-100x faster than current solutions

Supply chain planning: 3 weeks to 45 minutes

China Mobile

International

Fraud Detection: batch to real-time for 300M calls/day

Learn from Connected Data

Continuous graph-based feature generation & training

Intuit

Al-based Customer 360 for entity resolution, recommendation engine, fraud detection

Mapping a Road to Success

- Customers
- Social Networks
- Sales CRM

Link & Merge Entities

- Rule-based
- ML-based

Build Initial Visualization System

Human Exploratory Learning

- Get to know your business/data better
- Define useful measures and displays, particularly for fraud investigation and confirmation

Unsupervised Learning

3

4

- Run graph algorithms to characterize your data: connections, groupings, frequent patterns, outliers
- What is typical/frequent vs. atypical?

Use Graph+ML to Detect & Investigate Money Laundering

Extract Graph Features

- Measure closeness and paths to entities of interest
- Detect communities and clusters (Louvain)
- Measure similarity between entities (Cosine, Jaccard)
- Rank the influence of entities (PageRank)
- Graph Embedding (Node2Vec)

Gather Training Data

Train Your ML Model with Graph Data

- Export graph data to external ML platform
- In-database MI

Viewing Risk in a Graph

VS.

An unstructured graph of unrelated bank transactions

Same graph, automatically clustered by their history Louvain Communities with graph + ML algorithms

Demonstration

Thank You

David Ronald Product Marketing Director TigerGraph <u>david.ronald@tigergraph.com</u>

Steven Fuller Senior Solutions Engineer TigerGraph <u>steven.fuller@tigergraph.com</u>

Thank You

