

How Intuit, Jaguar Land Rover, Xandr and UnitedHealth Group Are Driving Business Outcomes with Graph & AI ?

Gaurav Deshpande - VP of Marketing

It's Great to Meet You all Virtually

Gaurav Deshpande

Vice President of Marketing

- All things marketing at TigerGraph
- Led 2 startups through explosive growth i2 Technologies (IPO) & Trigo
 Technologies (largest MDM acquisition by IBM)
- Patents in supply chain management and big data analytics
- HUGE GRAPH HEAD
- Email: <u>gaurav@tigergraph.com</u>

Who is TigerGraph?

We provide advanced analytics and machine learning on connected data

- The only scalable graph database for the enterprise: 40-300x faster than competition
- Foundational for AI and ML solutions
- Designed for efficient concurrent OLTP and OLAP workloads
- SQL-like guery language (GSQL) accelerates time to solution
- Available on-premise & on: O Google GCP, A Microsoft Azure, aws

Our customers include:

- The largest companies in financial, healthcare, telecom, media, utilities and innovative startups in cybersecurity, ecommerce and retail
- Founded in 2012, HQ in Redwood City, California

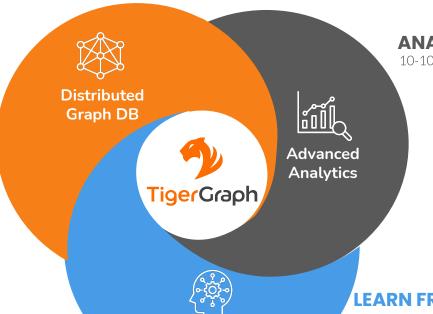
Corporate Overview Video

Advanced Analytics and Machine Learning on Connected Data

CONNECT ALL DATASETS AND PIPELINES

Friction-free scale up from GB to TB to Petabyte with lowest cost of ownership

UNITEDHEALTH GROUP®


Customer 360 connecting 200+ datasets and pipelines

Fortune 50 Retailer

Item 360 for eCommerce across 100+ datasets

Identity graph connecting multiple data pipelines

In-Database

Machine Learning

ANALYZE CONNECTED DATA

10-100X faster than current solutions

Jaguar Land Rover

Supply chain planning accelerated from 3 weeks to 45 minutes

Fraud Detection - batch to real-time for 750 million calls/day

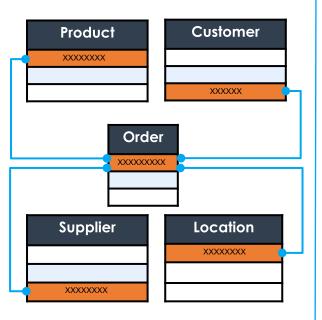
LEARN FROM CONNECTED DATA

Continuous graph-based feature generation and training

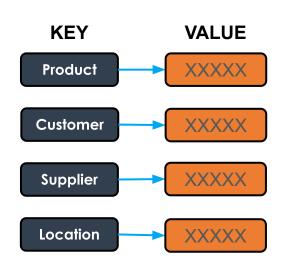
ıntuıt.

Al-based Customer 360 for entity resolution, recommendation engine, fraud detection

7 out of 10 top global banks


Real-time fraud detection and credit risk assessment

© 2021. ALL RIGHTS RESERVED. | TIGERGRAPH.COM |

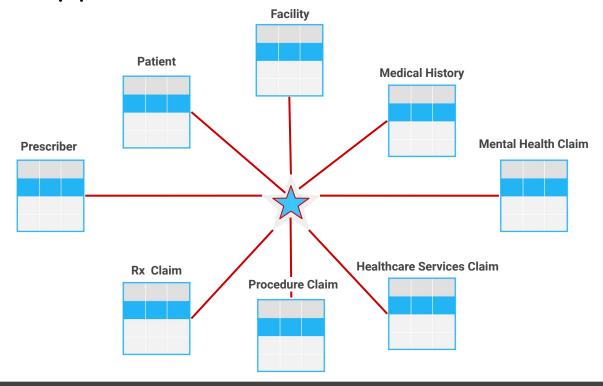

Evolution of The Database Landscape and The Rise of Graph DB

Relational Database

- Rigid schema
- High performance for transactions
- Poor performance for deep analytics

Key-Value Database

- Highly fluid schema/no schema
- High performance for simple transactions
- Poor performance deep analytics


Graph Database

- Flexible schema
- High performance for complex transactions
- High performance for deep analytics

Traditional Approach, with A Relational Database

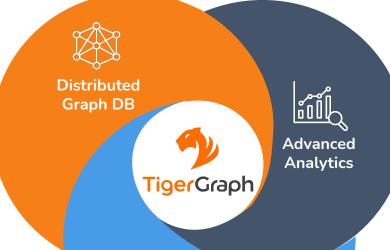
Complex Database Table Joins Across Silos Leads To Delayed Business Insights

Business Need 1: Connect Your Data

CONNECT ALL DATASETS AND PIPELINES

Friction-free scale up from GB to TB to Petabyte with lowest cost of ownership

UNITEDHEALTH GROUP®


Customer 360 connecting 200+ datasets and pipelines

Fortune 50 Retailer

Item 360 for eCommerce across 100+ datasets

Identity graph connecting multiple data pipelines

ANALYZE CONNECTED DATA

10-100X faster than current solutions

Jaguar Land Rover

Supply chain planning accelerated from 3 weeks to 45 minutes

Fraud Detection - batch to

In-Database Machine Learning

LEARN FROM CONNECTED DATA

Continuous graph-based feature generation and training

intuit

Al-based Customer 360 for entity resolution, recommendation engine, fraud detection

7 out of 10 top global banks

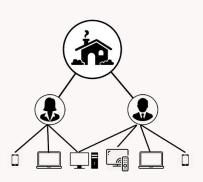
Real-time fraud detection and credit risk assessment

2021. ALL RIGHTS RESERVED. | TIGERGRAPH.COM

-7

Healthcare: Connect All Datasets and Pipelines for

Customer 360 Journey for Healthcare Insurance Members



- Integrate 200+ datasets and pipelines to provide unified view for each member driving higher productivity for 23,000+ call center agents
- Find similar members with a click of a button in real-time (50 ms)
- Deliver care path recommendations for similar members

UnitedHealth Group Has Built the Largest Healthcare Graph in the world with 10 billion entities (claims, patients, doctors..), 50 billion relationships & 23,000+ users! (Graph+Al Keynote - https://info.tigergraph.com/keynote-edward-sverdlin)

An Identity Graph stitches together different identifiers into a unified view of **people**, the **households** they belong to and **devices** they use.

Why is Identity important?

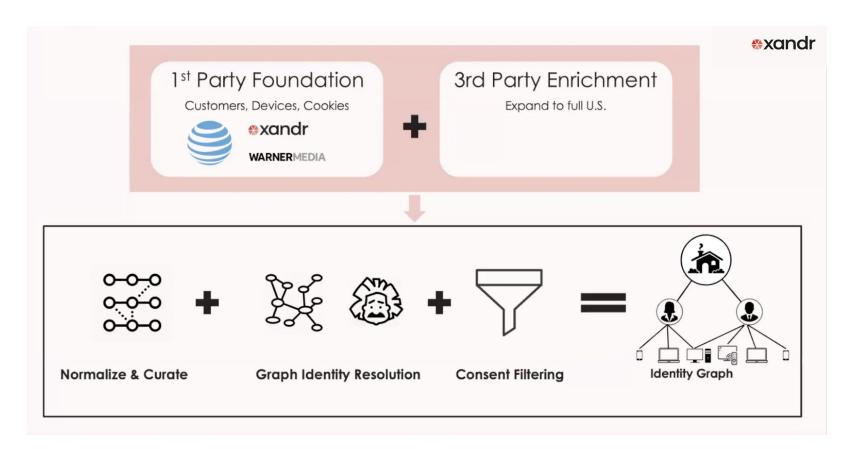
People use multiple devices and screens daily

Identity enables cross-device & converged addressable advertising

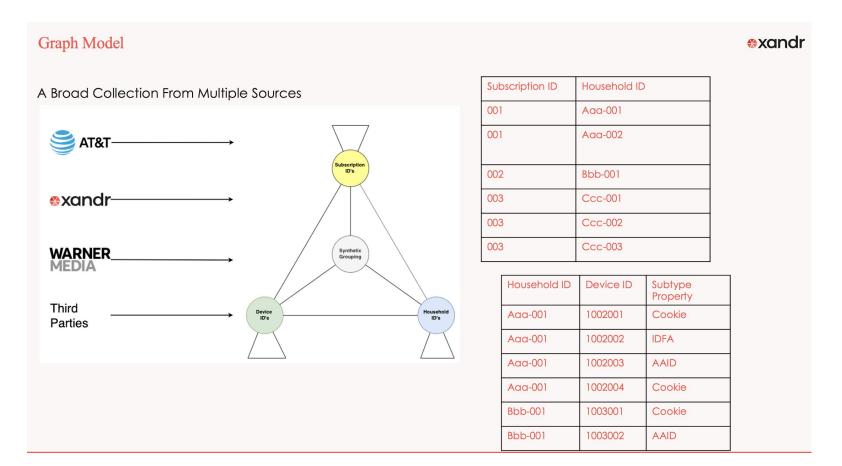
- More efficiency...Household/Consumer Frequency Capping
- More reach...Audience Extension to Linked Devices
- More lift...Conversion Attribution across Devices

People expect relevancy and personalization

People demand privacy


Identity allows consent elections across device & affiliated brands.

People will be harder to reach & target in a 3rd party cookieless future


Deterministic 1st party ID consortiums of publishers & brands help.

From Graph + AI Conference Presentation by Xandr Data Science team - www.tigergraph.com/xandr

From Graph + AI Conference Presentation by Xandr Data Science team - www.tigergraph.com/xandr

From Graph + AI Conference Presentation by Xandr Data Science team - www.tigergraph.com/xandr

Does it scale?

- Distributed graph with 5+ billion vertices and 7+ billion edges
- Up to 1 billion daily graph updates from input
- 300 million vertices and 1+ billion edges created by the algorithms
- We built a 10 node TigerGraph cluster. Each node has 48 cores, 400GB RAM, 3GBps NVMe storage.
- Running BFS-style algorithms, like Label Persistence, spanning over a large distributed graph is extremely memory intensive
- We can add more RAM to the cluster nodes but vertical scaling has limits. We need to scale horizontally

From Graph + AI Conference Presentation by Xandr Data Science team - www.tigergraph.com/xandr

gerGraph © 2021 ALL RIGHTS RESERVED. | TIGERGRAPH.COM |

Xandr Improves Advertising Targeting Effectiveness with **Example** Identity Graph powered by TigerGraph

Opportunity

Xandr wanted a way to help advertisers target audiences with the right promotional messages by deeply analyzing data on consumers, devices, content, advertisers' needs and other attributes, collected across 15 WarnerMedia properties and credit reports from Experian.

Solution

Xandr has built an identity graph using AT&T, WarnerMedia, Third-party and its own data, and leverage TigerGraph to perform entity resolution.

Results

- Implement frequency-capping at the household or user level to ensure efficient advertiser spend
- Help advertisers find more consumers with audience extension and increase their campaigns lift with conversion attribution across different devices
- Manage consent elections across first party assets and third party data to respect customer preferences

More details including customer success story, Graph + AI conference session by Xandr team at tigergraph.com/xandr

Business Need 2: Analyze Connected Data

CONNECT ALL DATASETS AND PIPELINES

Friction-free scale up from GB to TB to Petabyte with lowest cost of ownership

UNITEDHEALTH GROUP®


Customer 360 connecting 200+ datasets and pipelines

Fortune 50 Retailer

Item 360 for eCommerce across 100-datasets

Identity graph connecting multiple data pipelines

ANALYZE CONNECTED DATA

10-100X faster than current solutions

Jaguar Land Rover

Supply chain planning accelerated from 3 weeks to 45 minutes

Fraud Detection - batch to real-time for 300 million calls/day

In-Database Machine Learning

LEARN FROM CONNECTED DATA

Continuous graph-based feature generation and training

ıntuit.

Al-based Customer 360 for entity resolution, recommendation engine, fraud detection

7 out of 10 top global banks

Real-time fraud detection and credit risk assessment

© 2021. ALL RIGHTS RESERVED. | TIGERGRAPH.COM

Answering Critical Business Questions With Graph Analytics

Overview

Data and analytics leaders struggle to advance a shared understanding of data across business verticals and functions. Jaguar Land Rover demonstrates how graph analytics can give the business a connected view of supply and demand, enabling efficient answers to critical business questions.

Solution Highlights

- 1. Identify a common language for speaking business and data.
- **2.** Connect supply and demand data in a knowledge graph and explore your most critical business problems by browsing up and down the graph. Examples:
 - a) Demand for a model is suddenly surging in the US market. Do we have all the parts we need to meet this demand? Where do the supplier risks lie?
 - **b)** Demand for a model is suddenly dropping drastically in the US market. What parts will we now have in surplus? How can we best use these parts?
 - **c)** What is the profitability impact of changing a feature of a car?

About the Company

Jaguar Land Rover (JLR)

Industry: Manufacturing Headquarters: Coventry, UK

Revenue: GBP 25.8 Billion (2019)

Employees: 44,101 (2019)

Gartner case study for Jaguar Land Rover - Answering Critical Business Questions with Graph Analytics (Jaguar Land Rover),

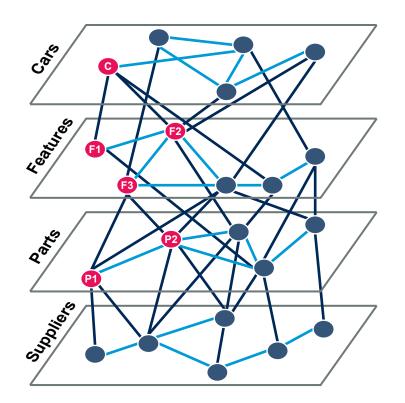
October 28, 2020, Gartner ID G00733557

Harry Powell
Director of Data
and Analytics

Alice Grout-Smith
Data Scientist

Martin Brett Senior Data Architect

Hazel Scourfield
Data Scientist


Clear Two-Way Line of Sight Between Demand and Supply

JLR's Demand-Supply Graph

Car C contains the feature F1.

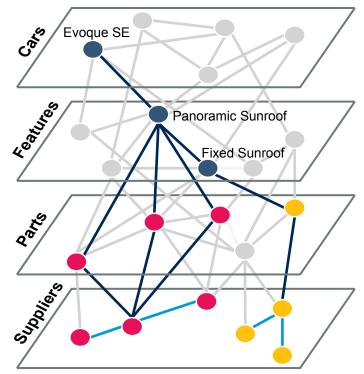
Features F1 and F2 are connected because they are both features of car model C.

Parts P1 and P2 are connected because they are both parts for feature F3.

Demand

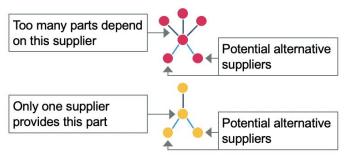
When two features share a part or a car, the features are connected.

When two parts share a feature or a supplier, the two parts are connected.


Supply

Identifying and Reducing Supply Chain Risks

JLR's Demand-Supply Graph for Exploration and Discovery

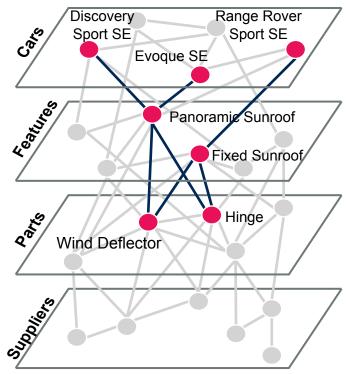


Source: Adapted From Jaguar Land Rover

Critical Business Questions: Demand for the Evoque model is suddenly surging in the US market. Do we have all the parts we need to meet this demand? Where do the supplier risks lie?

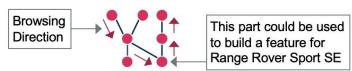
Procedure for Exploration:

- Browse the graph to identify all features for Evoque SE.
- 2 For each feature, browse the graph to find all parts needed for the feature.
- 3 For each part, browse the graph to identify all the suppliers for the part.
- 4 Look for graph substructures such as fan-in and fan-out patterns to identify and mitigate supplier risk.



Making the Most of Surplus Inventory

JLR's Demand-Supply Graph for Investigation and Inference

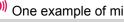


Source: Adapted From Jaguar Land Rover

Critical Business Questions: Demand for Discovery Sports is suddenly dropping drastically in the US market. What parts will we now have in surplus? How can we best use these parts?

Procedure for Investigation:

- Browse the graph to identify all features of Discovery Sport SE. Let's call these features SF1.
- Identify models that are in greater demand. For each model, identify the features to build the car. Let's call these features SF2.
- 3 Find the intersection of sets SF1 and SF2. These are the features this car model has in common with the Discovery Sport SE model. These features can be used to build this more in-demand car model instead.
- For the features that are not shared between the car models, identify the parts that are used by the Discovery Sport SE alone. For each of these parts, look for the following fan-in and fan-out patterns.



Solving an Intractable Optimization Problem

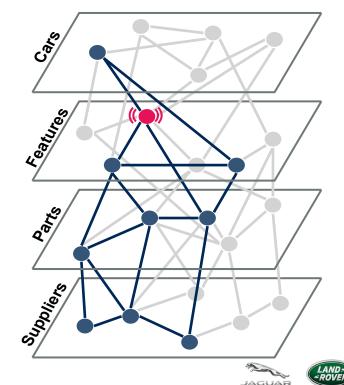
Critical Business Question: What is the profitability impact of changing a feature of a car?

Evoque With Plain Roof

((O)) One example of millions of what-if perturbations

Evoque With Sunroof

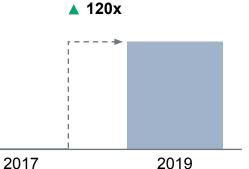
Suppliers


The feature change has upstream ripple effects on the car's price and revenue.

Revenue impact

Replace the sunroof with the moonroof.

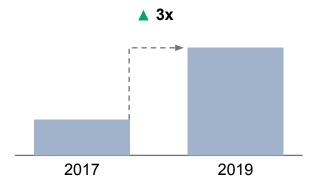
Cost impact


The feature change has downstream ripple effects on parts inventory and cost.

Source: Adapted From Jaguar Land Rover


Results

Decision Speed


Source: Adapted From Jaguar Land Rover

Supplier Risk

Source: Adapted From Jaguar Land Rover

Business Value

Source: Adapted From Jaguar Land Rover

"As we began using the same data as our commercial and manufacturing partners, it has become a lot easier to work together and address our business problems in greater depth."

Director of Purchasing, JLR

Jaguar Land Rover Featured on ClO.com

Harry Powell Director of Data & Analytics, JLR

Accelerate planning at JLR - weeks to minutes

The software, from TigerGraph, detected when suppliers would fail to meet quota demands.

"We used the graph to re-sequence how our vehicle orders were to be built in our factory in response to a supplier failure," Powell says.

Queries across the supply chain model now take
30 to 45 minutes compared to weeks
using SQL relational database software.

CIO.com article - The pandemic pivot: IT leaders innovate on the fly, August 13 2020

More details including customer success story, Graph + AI conference session at https://www.tigergraph.com/customers

Business Need 3: LEARN from Connected Data

CONNECT ALL DATASETS AND PIPELINES

Friction-free scale up from GB to TB to Petabyte with lowest cost of ownership

UNITEDHEALTH GROUP®

Customer 360 connecting 200+ datasets and pipelines

Fortune 50 Retailer

Item 360 for eCommerce across 100-datasets

Identity graph connecting multiple data pipelines

ANALYZE CONNECTED DATA

10-100X faster than current solutions

Jaguar Land Rover

Supply chain planning accelerated from 3 weeks to 45 minutes

Fraud Detection - batch to real-time for 300 million calls/day.

In-Database Machine Learning

LEARN FROM CONNECTED DATA

Continuous graph-based feature generation and training

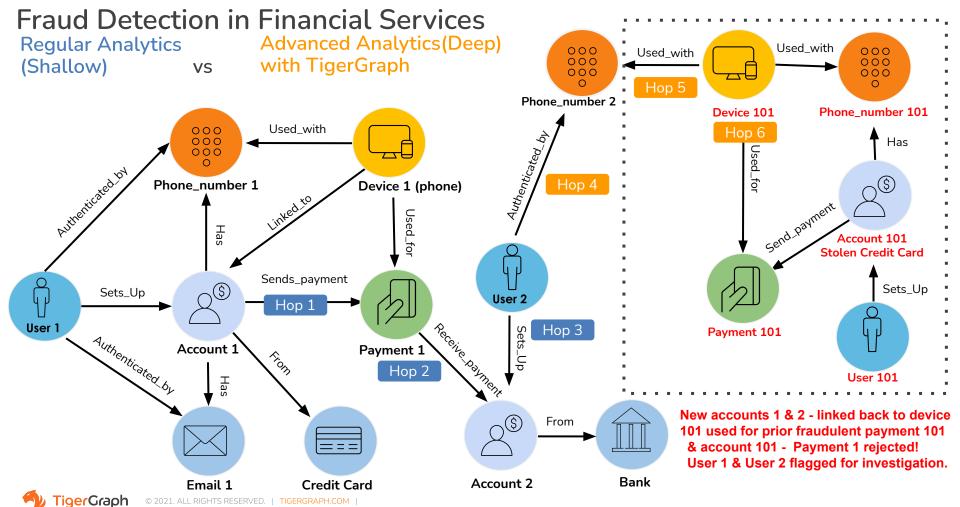
ıntuıt.

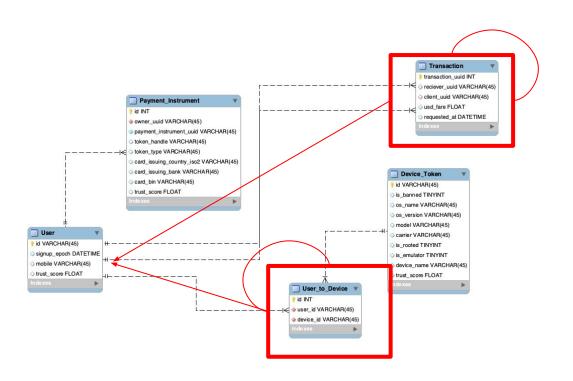
Al-based Customer 360 for entity resolution, recommendation engine, fraud detection

7 out of 10 top global banks

Real-time fraud detection and credit risk assessment

© 2021. ALL RIGHTS RESERVED. | TIGERGRAPH.COM


Fraud Detection: Need for Better Al


- \$118 billion of blocked sales in the U.S. with 15% of cardholders experiencing blocked sales
- High-income consumers (> \$75,00/yr) at higher risk of false positives (22%)
- 40% of denied users are attempting to pay a greater than \$250 transaction

Sign up FREE for TigerGraph Cloud to use the starter kit for fraud detection (payments)

RDBMS Requires Complex Table Joins: Can't Support Real-Time Traversal of Connected Data

Preventing Fraudulent Loans with TigerGraph Tier 1 U.S. Bank

Business Challenge

A leading U.S. bank needed to search across **20TB** of data for possible connections between credit card applications known to be fraudulent and applications of unknown status - relational databases and other graph providers were not up to the task, as they were unable to deliver the **speed and scale** required.

Solution

- Pairing graph technology with machine learning to identify fraudulent activity at scale and intervene in real-time.
- Leveraging deep analytics to find hidden connections across 20TB+ of data.

Business Benefits

 Able to score and prevent fraudulent loan applications on a massive scale – minimum 30% uplift and \$15M annual incremental fraud avoidance. \$1.5M through cost savings on false positives.

20TB

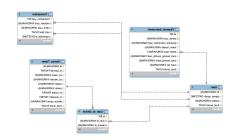
Card applications data

6 weeks

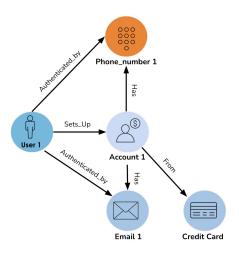
PoC elapsed time

3 months

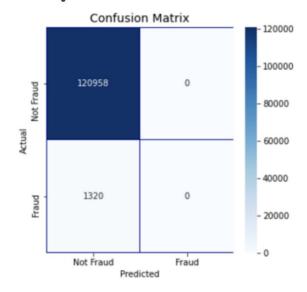
Time to build and fully deploy platform to production

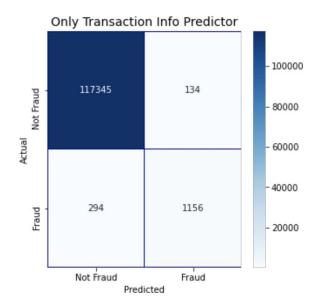

\$16.5M

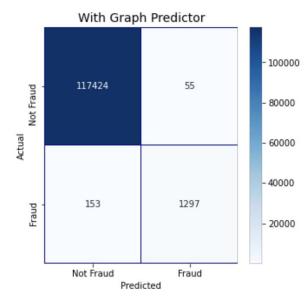
1st year ROI with 30% uplift in fraud detection


CLV Impact > \$100M

Feature Extraction for ML/AI


Variable description	Variables in use currently	Variables usable with a graph database
Total value of all transactions for merchant		1
Total number of frauds detected for merchant		2
Total value of all transactions for merchant category		3
Total number of frauds detected for customer		4
Total number of transactions performed by customer		5
Amount of transaction	3	6
Maximum value of one transaction for merchant		7
Customer	4	8
Total number of frauds detected for merchant category		9
Maximum value of one transaction for merchant category		10
Merchant category	2	11
Merchant	1	12
Total number of transactions for merchant category		13
Total number of transactions for merchant		14
Total amount of all transactions by this customer		15
Maximum value of a transaction for customer		16




Double the performance of Fraud Detection System with 50% reduction in false positives & 50% reduction is undetected fraud transactions with Graph DB features when compared to legacy solution

Improvement

No Fraud Detection:

1320 frauds undetected 0 false positives

Best Classifier on Transaction Data:

294 frauds undetected 134 false positives

Best Classifier on Graph Data:

153 frauds undetected: 48% better 55 false positives: 59% better

Visit tigergraph.com → Solutions → Financial Services for the solution brief & machine learning workshop for building the fraud detection system with TigerGraph

© 2021. ALL RIGHTS RESERVED. | TIGERGRAPH.COM |

Detecting Fraud Rings with TigerGraph Tier 1 U.S. Bank

Business Challenge

A leading U.S. bank wanted a better way to detect and remove fraudsters from their credit-card network. Prototypes had shown that a combination of advanced graph algorithms gave significant gains – big-data tools and other graph technologies either couldn't scale to the full customer base or gave inconsistent results.

Solution

- Implementing PageRank and Louvain [fraud] community detection in an MPP native-parallel database.
- Leveraging deep analytics to find hidden connections across 20TB+ of data.

Business Benefits

Able to expose fraud rings, shut down connected cards, and combat fraudulent activity on a massive scale –35% uplift and \$50M incremental fraud avoidance. >\$1.5 million through cost savings on false positives, infrastructure and TCO

10TB

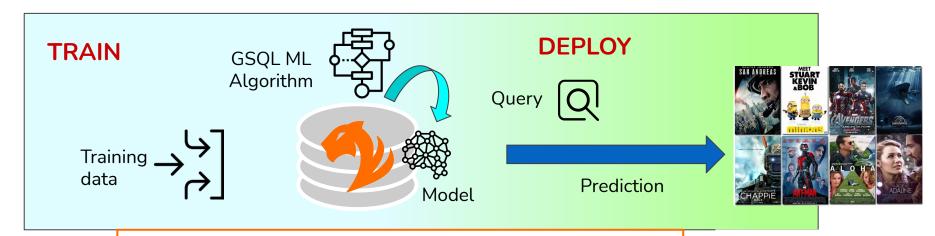
Card applications data

6 weeks

PoC elapsed time

3 months

Time to build and fully deploy platform to production


+\$50M

1st year ROI with 35% uplift in fraud detection

CLV Impact > \$200M

In-Graph Database ML with GSQL

- Native graph storage and PG model
- Coded once, auto scale-out & scale-up
- Real-time updates
- GSQL Turing-complete language
 - Preprocess data
 - Training: flow-control, accumulator, pattern match
 - Model validation

Applications:

- Entity resolution
- Recommendation
- Fraud detection
- ...

© 2020. ALL RIGHTS RESERVED. | TIGERGRAPH.COM

In-Graph Machine Learning

Efficient Machine Learning requires:

	TigerGraph	typical graph database
Big Data Capacity		?
Programmable for iterative, data-intensive algorithms		X
Parallel processing		X
Parallel accumulation		X

7 of the Top 10 Global Banks Use TigerGraph

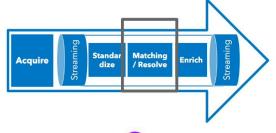
Credit Card Fraud: Is applicant connected to potential fraudsters?

Merchant Analytics: Transaction sequencing to detect geolocation proximity. Impact Analysis:
Communities or
Clusters
impacted by
the fraud rings

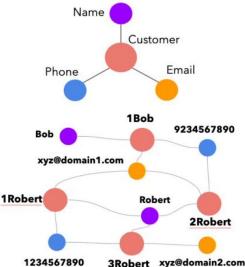
Trade
Surveillance: Are
employees
following the
rules?

Credit Scoring: Real-time credit

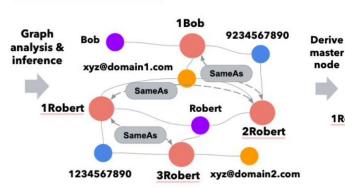
Real-time credit scoring to help recommend offers best suited to customer profiles?

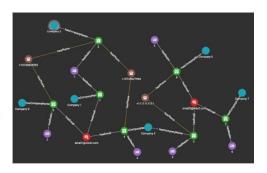

Wealth Management:

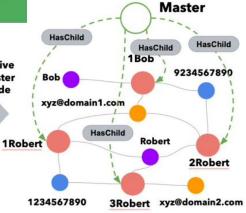
What Accounts, HNI to target for stocks or life change events.



Semantics in Entity Resolution: Graph-based Entity Mastering

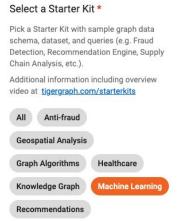

Near-real-time Incremental Entity Matching

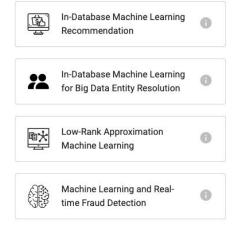

- Semantics and lineage preserved
- Declarative logic (inference, derivation)
- Built-in visual explanation



19% Reduction

The TigerGraph Difference


Feature	Design Difference	Benefit
Real-Time Deep-Link Querying 5 to 10+ hops	Native Graph designC++ engine for high performanceStorage Architecture	 Uncovers hard-to-find patterns Operational, real-time HTAP: Transactions+Analytics
Handling Massive Scale The state of the sta	 Distributed DB architecture Massively parallel processing Compressed storage reduces footprint and messaging 	 Integrates all your data Automatic partitioning Elastic scaling of resource usage
In-Database Analytics & Machine Learning	 GSQL: High-level yet Turing-complete language User-extensible graph algorithm library, runs in-DB ACID (OLTP) & Accumulators (OLAP) 	 Avoids transferring data Richer graph context Graph-based feature extraction for supervised machine learning In-DB machine learning training
CODE	No-code migration from RDBMSNo-code Visual Query Builder	 Democratize self-service analytics to derive new-insights from legacy/external data stores



Starter Kits and Developer Portal for Graph+ML

- Content-based movie recommendation: similarity, k-nearest neighbor + latent factor
- 2. Entity resolution: Link & merge similar entities, based on *similar* properties and neighbors
- 3. Low-rank approximation of graph relationships
- 4. Graph feature engineering for anti-fraud ML

dev.tigergraph.com

- Unsupervised Learning with Graph Algorithms
- 2. Feature Set Extraction for Machine Learning
- 3. ML Enrichment with Graph Features
- 4. Graph Enrichment with Machine Learning
- In-database ML Techniques for Graphs

TigerGraph

© 2021. ALL RIGHTS RESERVED. | TIGERGRAPH.COM

Get Started for Free

- Get the Free Enterprise License at tigergraph.com
- Try TigerGraph Cloud with free tier tigergraph.com/cloud
- Learn from 40+ on-demand sessions at tigergraph.com/graphaiworld
- Take a <u>Test Drive Online Demo</u> at tigergraph.com/testdrive
- Join the **Community** at tigergraph.com/community

