@ TigerGraph

ARCHITECTURE
OVERVIEW

Why TigerGraph is 100x
faster than competition

July 22, 2020




Today’s Presenters

Rayees Pasha
Principal Product Manager

Victor Lee
Head of Product Strategy &
Developer Relations
e BSin Electrical Engineering
and Computer Science from
UC Berkeley

e MSin Computer Science
from University of Memphis

e Prior Lead PM and ENG
positions at Workday,

e MSin Electrical Engineering Hitachi and HP

from Stanford University £ tice in Datab
° xpertise in Database

Management and Big Data

e PhD in Computer Science
Technologies

from Kent State University
focused on graph data mining

TigerGraph

®

e 20+ years in tech industry

% TigerGraph



Some Housekeeping Items

e Although your phone is muted you

can ask questions at any time using .

the Q&A tab in the Zoom menu .
e The webinar is being recorded and RN L o N

will be emailed you with the slides ‘e 5o ¢«
e |[f you have any issues with Zoom ° o . O e

please contact the organizer via chat 5 *¥ie

74 N :
O " e %
E Audio Settings Q&A Chat . ‘ ,,,,, . ®

PLEASE SEND QUESTIONS VIA ZOOM Q&A

w TigerGraph © 2020. ALL RIGHTS RESERVED. | TIGERGRAPH.COM |



Today’s Outline /
% % 0 System Architecture Overview
e Data Ingestion and Storage
\),é% N Data Processing

/K# /\A/%b Non-functional Features
)& % e HA

e Transaction Management
/ ¥ et

e Security
w TigerGraph © 2020. ALL RIGHTS RESERVED. | TIGERGRAPH.COM |



SYSTEM
ARCHITECTURE
OVERVIEW




% TigerGraph

The TigerGraph Difference

Real-Time Deep-Link Querying

5 to 10+ hops deep .

Handling Massive Scale

%9999
- -

In-Database Analytics

© 2020. ALL RIGHTS RESERVED. | TIGERGRAPH.COM |

Native Graph design
C++ engine, for high performance

Storage Architecture

Distributed DB architecture
Massively parallel processing

Compressed storage reduces
footprint and messaging

GSQL: High-level yet
Turing-complete language
User-extensible graph algorithm
library, runs in-DB

ACID (OLTP) and Accumulators
(OLAP)

Uncovers hard-to-find patterns
Operational, real-time

HTAP: Transactions+Analytics

Integrates all your data
Automatic partitioning

Elastic scaling of resource usage

Avoids transferring data
Richer graph context

In-DB machine learning



TigerGraph Architecture

Operational and - - ‘\

Historical Data i
ey RESTful Visual GSQL
(& 10T signals APIs Design Ul Queries ARGUGS
E] Orders
USER Machine Learnin
@ Payments B bATA b | oueries | esou L
o_ — O LOADER s GRAPH | SERVER
B shiments ALGORITHMS
&) - Visualization
3 ) grosssssbcissnis : s
Invoices DBs : Messogo,
Sy aracur Oueuing 3 5
(G visits Sporiz | apache Katka | (O— Q Business Intelligence
| zookeeper
ab, pownioads listream T
] Dashboard Reports
| Files | I
MASIEL D OO I = | 3 00 0 T
o_ G5t i Graph P - Data Warehouse
: raph Storage ra rocessing i
R customer Engine GSE Engine GPE
- E :
¢@* Supplier PE Master Data Stores
: B O & By B
R Employee i GraphData  Indexing ID Parallel Query Data Snapshot
: Storage Service Processing

[ Dpevice

w TigerGraph  ©2020 ALLRIGHTS RESERVED. | TIGERGRAPH.COM |



Seamless integration enables businesses to accomplish more
with existing investments

Master Data

&% Customers
[}

= 4 Supplier

Real-time
Customer
360/MDM

Product & Service
Marketing

& Employee

5

Device

Al & Machine
Learning

Geospatial
Analysis

Business Outcomes, Solutions & Use Cases

Recommendation
Engine

Time Series
Analysis

Anti-Mone

Money . Cyber Fraud Risk Assessment &
Laundering Security Detection Monitoring
Network, IT &

Cloud Resource
Optimization

Enterprise
Knowledge
Graph

Energy
Management
System

Supply Chain
Analysis

o

@ Downloads

perational Data
{@ loT Signals
Orders

-v

Payments
Shipments
Invoices
Visits

A
Queries / Lookups, Comprehensive Graph Patterns and Algorithms

—————Batfch and Stfreaming———p Q«Groph Computed Features—p

%E{% Machine

k5 Learning

Historical Data

Data
Warehouse

Data Mart Data Lake NoSQL

© 2019 TigerGraph. All Rights

Reserved



TigerGraph Distributed Database Architecture

Simple setup, Performant design

o Setup: Just tell TigerGraph how many servers.
e TigerGraph seamlessly distributes data.
e Users see a single database, not shards.

A

e A ~ Real-time active

replication

\ .
@ w @ % w ?Jaﬁfbr;lity (HA)

> e write to all
[ J

AL AL AL T T

consistency

@ TigerG{aph © 2020. ALL RIGHTS RESERVED. |

Advantages:

Simple to setup and
manage

Unlimited scale-out;
simple to expand

Scalable OLAP:
massively parallel
processing

Scalable OLTP:
concurrent ACID
transactions

Economical



DATA INGESTION
AND STORAGE




Data Ingestion

Step 1

Loaders take in user source
data.

o Bulk load of data files or
a Kafka stream in CSV or
JSON format

e HTTP POSTs via REST
services (JSON)

e GSQL Insert commands

m TigerGraph © 2020. ALL RIGHTS RESERVED. | TIGERGRAPH.COM

Dispatcher takes in the data
ingestion requests in the form of
updates to the database.

1. Query IDS to getinternal
IDs

2. Convert data to internal
format

3. Send data to one or more
corresponding GPEs

Each GPE consumes the
partial data updates,
processes it and puts it on
disk.

Loading Jobs and POST use
UPSERT semantics:
e If vertex/edge doesn't
yet exist, create it.
e If vertex/edge already
exists, update it.
e |dempotent

11



Data Ingestion ST

I Incoming
* Outgoing

5 ID Translation
Response

Restpp

Insert/Update/Delete
Vertices and Edges

CSV/JSON

Acknowledge
?'.'_"_' LA S '_"_'_'é?'.'_"_' PSR i ___.._ P oSS ____I Listen to
| : : .1 corresponding
Kafka Clugter .1 topic for new
X .1 messages
: g : : copy of data
Synchronizé
data to disk:

& TigerGraph  ©2020 ALLRIGHTS RESERVED. | TIGERGRAPH.COM |

12



TigerGraph Distributed Native Graph Storage

IDS: Bidirectional external ID to Internal ID
mapping

321, John, 33, john@abc.

4322, Tom, 27, tom@abc.c Vertex Partitions: Vertex internal ID and attributes

1234321, 1234322, 2020-04-23, 3.3

Edge Partitions: Source vertex internal ID,
target vertex internal ID, edge attributes

& TigerGraph  ©2020 ALLRIGHTS RESERVED. | TIGERGRAPH.COM | 13


mailto:john@abc.com
mailto:john@abc.com

TigerGraph Distributed Native Graph Storage

Data is split into
segments.

2303 8 JI/9
| C43C5)0s) (10](11/)[12
———— — = — =~} === =
(1 )2 ]3] [7][8'[9]
L4 (5] s L 10 J[ 11/][ 12 |
W
(1J(2](3] (7])(8](9]
Partition 1

@ Tige(Graph © 2020. ALL RIGHTS RESERVED. | Tl

1392273

Partition 2

T Ips
() VERTEX

()] EDGE

~—
_\h_______———zl
@ @ Il | Data in segments is distributed
L6 18] 1| | across the cluster.
L1z ) e s The segments with same ID store
| io J[ 17 J[ 18 ] data for the same set of vertices.
\ —
(13)714](15) .
- The location of a vertex can be
w calculated based on its internal ID
Partition 3




O
<
",
o
LL
O
O
ia
ol
<
_I
<
O



Query Processing Workflow Overview

Users use GSQL,
GraphStudio or RESTful API

to submit a query using i

HTTP GET/POST request

One of the REST servers
parses the request based on
graph schema and forwards
it to a dispatcher

m Tige(Graph © 2020. ALL RIGHTS RESERVED. | TIGERGRAPH.COM |

REST server responds back the
HTTP request, in JSON format

GPE performs the computation.

Dispatcher collects and returns
the final GPE run result to
REST server

Dispatcher queries ID Service,
convert the request into
internal format, and route it to
a GPE

16




TigerGraph Memory Usage Overview
TigerGraph Memory
A

Global Accumulators
(Global Copy/Local Copy)

—

Local Accumulators

Shuffled
Partitions/Accumulators

Current Activated Vertex Set

Upserted Vertices/Edges

Query Memory

Graph

(
Query 1 Query 2
snapshot | snapshot
Query 3
snapshot
GPE GSE(IDS) | proc Idle
Graph Partitions Bidirectiqnal
ID Mapping
Graph Updates
\
Y

System Memory




Query Processing workflow

External GSE(IDS)
Query Name, Vey
parameters,
vertexes
i Translated
Nginx [ ]
g Restpp Internal
Vertex ID
Query Name,
Parameters .
GPE Process Query Logic....
Translated
External GSE(IDS)
Query Result Combined Vertex|
Response - l
Nginx @ Rest nterna
d i Vertex ID
In Response
JSON
Incomin R
> 9 esponse e

’ Outgoing

& TigerGraph  ©2020 ALLRIGHTS RESERVED. | TIGERGRAPH.COM |



GSQL Queries

Schema-Based Built-in High SQL-Like
- Performance Parallelism
Optimizes storage o= Familiar to 1 million

efficiency and query Achieves fast results while users
speed. Supports being easy to code.

data-independent Accumulators turbocharge

app/query parallel computation.

development.

Conventional Procedural Queries Transactional Graph

Control Flow (FOR, Updates
WH"'E,’ IF/ELSE) Parameterized queries HTAP - Hybrld
Makes it easy to are flexible and can be Transactional /

implement conventional Analytical Processing
algorithms with real-time data
updates

used to build more
complex queries

% Tigefoaph © 2020. ALL RIGHTS RESERVED. INNGERGRAPH.COM



MPP - Distributed Cluster in Single Server mode

Single Server Mode
Query

Bl

w TigerGraph  ©2020 ALLRIGHTS RESERVED. | TIGERGRAPH.COM |

Single Server Mode

e The cluster elects one
server to be the master for
that query.

e All query computations
take place on query master.

e \ertex and edge data are
copied to the query master
as needed.

e Best for queries with one or
a few starting vertices.

20



HTAP: Hybrid Transaction/Analytical Processing

OLTP - Transactional

e Real-time read and write

e ACID properties
(guarantee that tfransaction is
correct)

e Concurrency
(many transactions at the same fime)

OLAP - Analytical Some Graph Databases
e Multi-dimensional Analysis + ACID
e Compute-intensive ‘

+ Concurrency
e Data-intensive

e Aggregation

© 2019 TigerGraph. All Rights 21 @ Tigefoaph

Reserved



There’s No Limit To Where Graph Can Help

Entity Resolution

Data Lineage

Influencer &
Community
Identification

Customer 360

Fraud Prevention

Knowledge
Graphs

Cybersecurity

Supply Chain
Management

Investment
Opportunity
Analysis

Explainable Al

Machine Learning

Transportation
Fleet & Logistics

Social Network
Analysis

Recommendation
Systems

Network & IT
Resource
Utilization

Drug Reaction
Analysis

© 2019 TigerGraph. All Rights
Reserved

22

ﬁa TigerGraph



MPP - Distributed Cluster in Distributed mode

Server 1 Server 2
Distributed Query Distributed Query

Cg@ (Master Node)

Server 3

A

L/

Distributed Query

g

@@ communication @@ communication
@@ communication

% TigerGraph © 2020. ALL RIGHTS RESERVED. | TIGERGRAPH.COM |

Distributed Mode

e The server that receives the
query becomes the master.

e Computations execute on
all servers in parallel.

e Global accumulators are
transferred across the
cluster.

e If your query starts from all
or most vertices, use this
mode.

23



MPP mechanism

Single Server mode VERSUS Distributed mode

Single Server Mode
ue,

Distributed Que; Dlstnbuted Query Distributed Query
(26 ter Nade)
c mmunl tion mmunl' ion

9.

Single Server Mode is better when

2. Modest number of vertices/edges are traversed.
3. Heavy usage of global accumulators.

Ex: Point query, single entity-based transaction/update

1. Starting from a single or small number of vertices.

m TigerGraph © 2020. ALL RIGHTS RESERVED. | TIGERGRAPH.COM |

Distributed Mode is better when
1. Starting from all or a large number of vertices.
2. Very large number vertices/edges are traversed.

Ex: Most graph algorithms & global analytics
(PageRank, Closeness Centrality, Louvain Community,
etc)

24



Accumulators

Accumulators are a special type of variables that accumulate information from multiple workers/threads during a
query. Workers/threads work asynchronously.

Accumulating phase 1: Receive messages and store them temporarily in a bucket that belongs to the
accumulator.

Accumulating phase 2: Aggregate the messages it received based on its accumulator type. The aggregated value

will become the accumulator’s value which can be accessed by other parts of the Query.

m Tige(Graph © 2020. ALL RIGHTS RESERVED. | TIGERGRAPH.COM |



Accumulators

The GSQL language provides many different accumulators, which follow the same
rules for receiving and accessing data. However, each of them has their unique way of
aggregating values.

SumAccum<int> MaxAccumc<int> MinAccumc<int> AvgAccum
Computes and stores the Computes and stores the Computes and stores the Computes and stores the
cumulative sum of numeric cumulative maximum of cumulative minimum of cumulative mean of a
values or the cumulative a series of values. a series of values. series of numeric values.

concatenation of text values.

m TigerGraph © 2020. ALL RIGHTS RESERVED. | TIGERGRAPH.COM |



NON-FUNCTIONAL

FEATURES

e High Availability

e Access Control & Security
e Transaction Management

RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR



High Availability
e TigerGraph HA Replication provides both Increased Throughput and Continuous

Operation

e Cluster size = P X R (Partitions x Replicas)
e Any cluster size is allowed, except 1x2

P = Partitioning Factor

A
4 A

s AR AR AR, AR .
AR AR AR AL R

m Tige(Graph © 2020. ALL RIGHTS RESERVED. | TIGERGRAPH.COM |

28



HA and Concurrency

e FEach server has T available workers for serving requests (GSQL query, REST POST, etc.)
T is a system configuration parameter, defaults to 8. Consider number of CPU cores.
e Cluster's total number of workers = TxPxR, e.g. 8x5x2 =80
o A point mode query uses 1 worker.
o A distributed mode query use P workers.

P = Partitioning Factor

A
f \

1A 2A 3A 4A 5A
1B 2B 3B 4B 5B > PR
Replication
% w % % @ Factor

% TigefGraph © 2020. ALL RIGHTS RESERVED. | TIGERGRAPH.COM | 29




HA Read and Write Behavior

All Replicas are Read/Write, always in sync with the latest updates
Writes go to all replicas (e.g. both 1A and 1B).

Reads can be from any one replica (e.g. either 1A or 1B).
Distributed queries can mix replicas (e.g. {1A, 2B, 3B, 4A, 5B}

is a valid active set for a request.)

P = Partitioning Factor

A
4 A

1A 2A 3A 4A SA
2IS - R=
1B 2B 3B 4B B Replication
% w % % @ Factor

% TigefGraph © 2020. ALL RIGHTS RESERVED. | TIGERGRAPH.COM |

30



HA Continuous Operation

e If any single server is unavailable (expected or unexpected):

o When it fails to respond after a certain number of tries, requests will automatically

divert to another replica (e.g. 3B is unavailable, so use 3A)

o If it fails in the middle of a transaction, that transaction might be aborted.
e System continues to operation, with reduced throughput, until server is restored.

P = Partitioning Factor

AN
4 A

wlA m2A &A m4A QSA

3B

1B 2B v 4B 5B
e ke ZIEXAEe ZIEs

% Tige(Graph © 2020. ALL RIGHTS RESERVED. | TIGERGRAPH.COM |

R =
Replication
Factor

31



NON-FUNCTIONAL

FEATURES

e High Availability

e Access Control & Security
e Transaction Management

RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR



Role-Based Access Control
e Follows SQL approach for roles.

o GSQL:
GRANT <role> ON GRAPH <graph> TO <userl, user2, ...

REVOKE <role> ON GRAPH <graph> FROM <userl, user2, ...

e Can map TigerGraph roles to external LDAP roles and groups.

% TigerGraph © 2020. ALL RIGHTS RESERVED. | TIGERGRAPH.COM |



Admin Portal Ul for Managing User Privileges

‘,4 AdminPortal

Dashboard
My Profile

Select a graph

MyThirdGraph
License

2 User

= Proxy Group

@/ TigerGraph

All Users Role Management

Super User Al

tigergraph tigergraph Tom

Ranch Linda

Query Writer 5

Lily Dan Amanda Linda

Query Reader 1

Lily

James

Luke

Emily

Angela

a0

Search user

Lily

Duc

Dan

Sunny

GraphStudio




MultiGraph for RBAC and Data Sharing

e Share & Collaborate

Multiple groups share one master . .
database “)’/ TigerGraph MultiGraph
= data integration, insights, productivity One Master Graph; Shared and Private Data

_______________________________

________________________________

e Real-time, Updatable
Shared updates, no copying
= cleaner, faster, cheaper, safer

- —

e Fine-Grained Security
Each group is granted its own view
Each group has its own admin user,
who manages local users' privileges.

-

% TigerGraph 020. ALL RIGHTS RESERVED

N -



Roles and Privileges

User
Management

Built-In Roles:

run existing loading jobs & queries for its assigned graph.

Queryreader privileges + create queries and run
data-manipulation commands on its assigned graph.

Querywriter privileges + modify the schema, create loading
jobs for its assigned graph.

Designer privileges + create global schema, create Schema
objects. Also, delete graphs which they created. Beslgn

Designer privileges, + create/drop users, grant/revoke roles for its
assigned graph. That is, control existence & privileges of its local users.

admin privileges on all graphs. Create global vertex & edge
types, create multiple graphs, and clear the database.

User-Defined Roles: in development

Loading and
Querying

Graph

Ls

Create/Drop User

Show User

Alter (Change)
Password

Grant/Revoke Role

Create/Drop/Show
Secret

Create/Drop/Show/
Refresh Token
(Deprecated)

Create/Drop
Vertex/Edge/Graph

Clear Graph Store
Drop All

Use Graph

Use Global

Create/Run Global
Schema_Change
Job

Create/Run
Schema_Change
Job

Create/Drop
Loading Job



Data Encryption

e Encrypted Data at Rest

o Choice of encryption levels (file, volume, partition, disk)
m Kernel level: dm-crypt / cryptsetup
m User level: FUSE (Filesystem in User Space)

o  Automatically encrypted in TigerGraph Cloud
e Encrypted Data in Transit

o Can set up SSL/TLS for HTTPS protocol
o Automatically encrypted in TigerGraph Cloud

% TigerGraph © 2020. ALL RIGHTS RESERVED. | TIGERGRAPH.COM |



NON-FUNCTIONAL

FEATURES

e High Availability

e Access Control & Security
e Transaction Management

RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR



Transactional Model

e The TigerGraph distributed database provides full ACID transactions
with sequential consistency

e Transactions definition:
o Each GSQL Query procedure is a transaction. Each query may have

multiple SELECT, INSERT, or UPDATE statements.

o Each REST++ GET, POST, or DELETE operation (which may have
multiple update operations within it) is a transaction.

w TigerGraph © 2020. ALL RIGHTS RESERVED. | TIGERGRAPH.COM |



ACID Compliance

Atomicity Consistency ~ Isolation Level Durability
GSQL query w/ or w/o Single-server Repeatable Read: - The TigerGraph platform
updates = Transaction Consistency: e Each transaction sees @ implements write-ahead
A transaction obeys data the same data. - logging (WAL) to disk to
Transactions are “all or validation rules. - provide durability.
nothing”: either all No Dirty/Phantom Read:
changes are successful, Distributed System e A transaction's - Logs are consumed
or none is successful. Sequential Consistency: updates are not -~ periodically to update
Every replica of the data visible to other - the database on disk.
performs the same transactions until the
operations in the same update is committed.
order.

@ TigerGraph  ©2020. ALLRIGHTS RESERVED. | TIGERGRAPHCOM |




.

Resources . .
TigerGraph Platform Overview: N Y
https://docs.tigergraph.com/intro/tigergraph-platform-o “\
verview )
HA Cluster Configuration: gy :
https://docs.tigergraph.com/admin/admin-guide/installa R .
tion-and-configuration/ha-cluster « .
s = e S
Transaction Processing and ACID Support: - e
httos://docs.tiqergraph.com/dev!trahsfctb 4 , Al ]
7o A OGBS '
i S TR AT e '
MultiGraph: o Co T Ay /]
https://docs.tigergraph.com/i uThﬁrébh—‘dve : .
\ '- | ;7\ 2 .».
-,// /’ . \k. - \; ‘. /
/. /\\ = £ e \ ﬁ\/
= ; ’ \\ Va ¥o ¥
& TigerGraph ’ ©2090. ALLRI <% N\ \ e, 4
g — ‘; ¥-‘ ‘ \/ " /A ! \


https://docs.tigergraph.com/intro/tigergraph-platform-overview
https://docs.tigergraph.com/intro/tigergraph-platform-overview
https://docs.tigergraph.com/admin/admin-guide/installation-and-configuration/ha-cluster
https://docs.tigergraph.com/admin/admin-guide/installation-and-configuration/ha-cluster
https://docs.tigergraph.com/dev/transaction-and-acid
https://docs.tigergraph.com/intro/multigraph-overview

% TigerGraph

Get Started for Free

e Try TigerGraph Cloud

e Download TigerGraph's Developer Edition

e T[ake a Test Drive - Online Demo

e Get TigerGraph Certified

e Join the Community

(]
y @TigerGraphDB u /tigergraph f /TigerGraphDB In /company/TigerGraph


https://www.tigergraph.com/cloud/
https://www.tigergraph.com/developer/
https://testdrive.tigergraph.com/
https://www.tigergraph.com/certification/
https://community.tigergraph.com/

@ TigerGraph

BACKUP




