
July 22, 2020

1

Victor Lee
Head of Product Strategy &
Developer Relations

● BS in Electrical Engineering
and Computer Science from
UC Berkeley

● MS in Electrical Engineering
from Stanford University

● PhD in Computer Science
from Kent State University
focused on graph data mining

● 20+ years in tech industry

2

Rayees Pasha
Principal Product Manager
● MS in Computer Science

from University of Memphis

● Prior Lead PM and ENG
positions at Workday,
Hitachi and HP

● Expertise in Database
Management and Big Data
Technologies

Some Housekeeping Items

3

● Although your phone is muted you
can ask questions at any time using
the Q&A tab in the Zoom menu

● The webinar is being recorded and
will be emailed you with the slides

● If you have any issues with Zoom
please contact the organizer via chat

1 System Architecture Overview

Data Processing

Data Ingestion and Storage

Non-functional Features
● HA
● Transaction Management
● Security

3

2

4

5

Feature Design Difference Benefit

Real-Time Deep-Link Querying ● Native Graph design

● C++ engine, for high performance

● Storage Architecture

● Uncovers hard-to-find patterns

● Operational, real-time

● HTAP: Transactions+Analytics

Handling Massive Scale ● Distributed DB architecture

● Massively parallel processing

● Compressed storage reduces
footprint and messaging

● Integrates all your data

● Automatic partitioning

● Elastic scaling of resource usage

In-Database Analytics ● GSQL: High-level yet
Turing-complete language

● User-extensible graph algorithm
library, runs in-DB

● ACID (OLTP) and Accumulators
(OLAP)

● Avoids transferring data

● Richer graph context

● In-DB machine learning

5 to 10+ hops deep

6

Advantages:
● Simple to setup and

manage

● Unlimited scale-out;
simple to expand

● Scalable OLAP:
massively parallel
processing

● Scalable OLTP:
concurrent ACID
transactions

● Economical

Simple setup, Performant design
● Setup: Just tell TigerGraph how many servers.
● TigerGraph seamlessly distributes data.
● Users see a single database, not shards.

Real-time active
replication
for High
Availability (HA)

● write to all
● read from any
● strong

consistency

9

10

11

Step 3

Each GPE consumes the
partial data updates,
processes it and puts it on
disk.

Loading Jobs and POST use
UPSERT semantics:

● If vertex/edge doesn't
yet exist, create it.

● If vertex/edge already
exists, update it.

● Idempotent

Step 1

Loaders take in user source
data.

● Bulk load of data files or
a Kafka stream in CSV or
JSON format

● HTTP POSTs via REST
services (JSON)

● GSQL Insert commands

Step 2

Dispatcher takes in the data
ingestion requests in the form of
updates to the database.

1. Query IDS to get internal
IDs

2. Convert data to internal
format

3. Send data to one or more
corresponding GPEs

12

Incremental
Data

Nginx Restpp

GPE GPE GPE

Disk Disk Disk

CSV/JSON Insert/Update/Delete
Vertices and Edges

Listen to
corresponding
topic for new
messages

Acknowledge

Response

Incoming

Outgoing

Synchronize
data to disk

GSE(IDS)

ID Translation

Kafka Kafka Kafka

Server 1 Server 2 Server 3

Kafka Cluster

In-memory
copy of data

“USER123” <---> 1234321 IDS: Bidirectional external ID to Internal ID
mapping

1234321, John, 33, john@abc.com
1234322, Tom, 27, tom@abc.com

...
Vertex Partitions: Vertex internal ID and attributes

1234321, 1234322, 2020-04-23, 3.3
 1234321, 1234324, 2020-02-13, 2.3

...
Edge Partitions: Source vertex internal ID,
 target vertex internal ID, edge attributes

13

mailto:john@abc.com
mailto:john@abc.com

1 2 3
4 5 6

1 2 3

4 5 6

1 2 3
4 5 6

7 8 9
10 11 12

7 8 9

10 11 12

7 8 9
10 11 12

13 14 15
16 17 18

13 14 15

16 17 18

13 14 15
16 17 18

Data is split into
segments.

Data in segments is distributed
across the cluster.

The segments with same ID store
data for the same set of vertices.

The location of a vertex can be
calculated based on its internal ID

IDS

VERTEX

EDGE

1392273

Partition 1 Partition 2 Partition 3
14

15

Users use GSQL,
GraphStudio or RESTful API
to submit a query using
HTTP GET/POST request

Dispatcher queries ID Service,
convert the request into
internal format, and route it to
a GPE

05

01

02 03

04

16

REST server responds back the
HTTP request, in JSON format

GPE performs the computation.
Dispatcher collects and returns
the final GPE run result to
REST server

One of the REST servers
parses the request based on
graph schema and forwards
it to a dispatcher

GPE GSE(IDS) MISC
PROC

Query 1
snapshot

Query 2
snapshot

System Memory

Query 3
snapshot ...

Idle

Graph Partitions

Query Memory

Bidirectional
ID Mapping

Graph Updates

Global Accumulators
(Global Copy/Local Copy)

Local Accumulators

Shuffled
Partitions/Accumulators

Current Activated Vertex Set

Upserted Vertices/Edges

TigerGraph Memory

17

Nginx Restpp

GSE(IDS)

GPE

Incoming

Outgoing

Request

Query Name,
parameters,
vertexes

External
Vertex ID

Translated
Internal
Vertex ID

Query Name,
Parameters

Process Query Logic….

Internal
Vertex ID
In Response

Nginx Restpp

GSE(IDS)

GPE

Request

JSON
Response

Translated
External
VertexIDCombined

Response
Query Result

18

19

Schema-Based

Optimizes storage
efficiency and query
speed. Supports
data-independent
app/query
development.

Built-in High
Performance Parallelism

Achieves fast results while
being easy to code.
Accumulators turbocharge
parallel computation.

SQL-Like

Familiar to 1 million
users

Conventional
Control Flow (FOR,
WHILE, IF/ELSE)
Makes it easy to
implement conventional
algorithms

Procedural Queries

Parameterized queries
are flexible and can be
used to build more
complex queries

Transactional Graph
Updates
HTAP - Hybrid
Transactional /
Analytical Processing
with real-time data
updates

Server 3Server 2Server 1

Single Server Mode
Query

Single Server Mode

● The cluster elects one
server to be the master for
that query.

● All query computations
take place on query master.

● Vertex and edge data are
copied to the query master
as needed.

● Best for queries with one or
a few starting vertices.

20

21

●

●

●

●

●

●

●

22

Server 3Server 2Server 1

Distributed Query
(Master Node)

Distributed Mode

● The server that receives the
query becomes the master.

● Computations execute on
all servers in parallel.

● Global accumulators are
transferred across the
cluster.

● If your query starts from all
or most vertices, use this
mode.

Distributed Query Distributed Query

@@ communication @@ communication

@@ communication

23

Server 1 Server 2 Server 3

Single Server Mode
Query

Single Server mode VERSUS Distributed mode

Server 1 Server 2 Server 3

Distributed Query
(Master Node)

Distributed Query Distributed Query

@@
communication

@@
communication

Single Server Mode is better when
1. Starting from a single or small number of vertices.

2. Modest number of vertices/edges are traversed.

3. Heavy usage of global accumulators.

Ex: Point query, single entity-based transaction/update

Distributed Mode is better when
1. Starting from all or a large number of vertices.

2. Very large number vertices/edges are traversed.

Ex: Most graph algorithms & global analytics
(PageRank, Closeness Centrality, Louvain Community,
etc.)

24

A

E

B

D

C

Accumulators are a special type of variables that accumulate information from multiple workers/threads during a
query. Workers/threads work asynchronously.

Accumulating phase 1: Receive messages and store them temporarily in a bucket that belongs to the
accumulator.

Accumulating phase 2: Aggregate the messages it received based on its accumulator type. The aggregated value
will become the accumulator’s value which can be accessed by other parts of the Query.

The GSQL language provides many different accumulators, which follow the same
rules for receiving and accessing data. However, each of them has their unique way of
aggregating values.

●
●
●

27

● TigerGraph HA Replication provides both Increased Throughput and Continuous
Operation

● Cluster size = P X R (Partitions x Replicas)

● Any cluster size is allowed, except 1x2

28

P = Partitioning Factor

R =
Replication
Factor

● Each server has T available workers for serving requests (GSQL query, REST POST, etc.)
T is a system configuration parameter, defaults to 8. Consider number of CPU cores.

● Cluster's total number of workers = TxPxR, e.g. 8x5x2 = 80
○ A point mode query uses 1 worker.
○ A distributed mode query use P workers.

29

P = Partitioning Factor

R =
Replication
Factor

● All Replicas are Read/Write, always in sync with the latest updates
● Writes go to all replicas (e.g. both 1A and 1B).
● Reads can be from any one replica (e.g. either 1A or 1B).
● Distributed queries can mix replicas (e.g. {1A, 2B, 3B, 4A, 5B}

is a valid active set for a request.)

30

P = Partitioning Factor

R =
Replication
Factor

● If any single server is unavailable (expected or unexpected):
○ When it fails to respond after a certain number of tries, requests will automatically

divert to another replica (e.g. 3B is unavailable, so use 3A)
○ If it fails in the middle of a transaction, that transaction might be aborted.

● System continues to operation, with reduced throughput, until server is restored.

31

P = Partitioning Factor

R =
Replication
FactorX

●
●
●

32

● Follows SQL approach for roles.

○ GSQL:
…

…

● Can map TigerGraph roles to external LDAP roles and groups.

35

● Share & Collaborate
○ Multiple groups share one master

database
⇒ data integration, insights, productivity

● Real-time, Updatable
Shared updates, no copying
⇒ cleaner, faster, cheaper, safer

● Fine-Grained Security
○ Each group is granted its own view
○ Each group has its own admin user,

who manages local users' privileges.

Built-In Roles:
● Queryreader: run existing loading jobs & queries for its assigned graph.

● Querywriter: Queryreader privileges + create queries and run
data-manipulation commands on its assigned graph.

● Designer: Querywriter privileges + modify the schema, create loading
jobs for its assigned graph.

● Globaldesigner: Designer privileges + create global schema, create
objects. Also, delete graphs which they created.

● Admin: Designer privileges, + create/drop users, grant/revoke roles for its
assigned graph. That is, control existence & privileges of its local users.

● Superuser: admin privileges on all graphs. Create global vertex & edge
types, create multiple graphs, and clear the database.

User-Defined Roles: in development

36

● Encrypted Data at Rest
○ Choice of encryption levels (file, volume, partition, disk)

■ Kernel level: dm-crypt / cryptsetup
■ User level: FUSE (Filesystem in User Space)

○ Automatically encrypted in TigerGraph Cloud

● Encrypted Data in Transit
○ Can set up SSL/TLS for HTTPS protocol
○ Automatically encrypted in TigerGraph Cloud

●
●
●

38

● The TigerGraph distributed database provides full ACID transactions
with sequential consistency

● Transactions definition:
○ Each GSQL Query procedure is a transaction. Each query may have

multiple SELECT, INSERT, or UPDATE statements.

○ Each REST++ GET, POST, or DELETE operation (which may have
multiple update operations within it) is a transaction.

40

The TigerGraph platform
implements write-ahead
logging (WAL) to disk to
provide durability.

Logs are consumed
periodically to update
the database on disk.

Durability

Repeatable Read:
● Each transaction sees

the same data.

No Dirty/Phantom Read:
● A transaction's

updates are not
visible to other
transactions until the
update is committed.

Isolation Level

Single-server
Consistency:
A transaction obeys data
validation rules.

Distributed System
Sequential Consistency:
Every replica of the data
performs the same
operations in the same
order.

Consistency

GSQL query w/ or w/o
updates = Transaction

Transactions are “all or
nothing”: either all
changes are successful,
or none is successful.

Atomicity

TigerGraph Platform Overview:
https://docs.tigergraph.com/intro/tigergraph-platform-o
verview

HA Cluster Configuration:
https://docs.tigergraph.com/admin/admin-guide/installa
tion-and-configuration/ha-cluster

Transaction Processing and ACID Support:

https://docs.tigergraph.com/dev/transaction-and-acid

MultiGraph:

https://docs.tigergraph.com/intro/multigraph-overview

https://docs.tigergraph.com/intro/tigergraph-platform-overview
https://docs.tigergraph.com/intro/tigergraph-platform-overview
https://docs.tigergraph.com/admin/admin-guide/installation-and-configuration/ha-cluster
https://docs.tigergraph.com/admin/admin-guide/installation-and-configuration/ha-cluster
https://docs.tigergraph.com/dev/transaction-and-acid
https://docs.tigergraph.com/intro/multigraph-overview

● Try TigerGraph Cloud

● Download TigerGraph’s Developer Edition

● Take a Test Drive - Online Demo

● Get TigerGraph Certified

● Join the Community

Continue your journey at TigerGraph Cloud - TGCLOUD.IO !

42

https://www.tigergraph.com/cloud/
https://www.tigergraph.com/developer/
https://testdrive.tigergraph.com/
https://www.tigergraph.com/certification/
https://community.tigergraph.com/

