
Fast Parallel Similarity Calculations
with FPGA Hardware

Dan McCreary, Distinguished Engineer, Optum

Kumar Deepak, Distinguished Engineer, Xilinx

Graph + AI World 2020
September 29, 2020

Talk Description

 The foundation of recommendation is finding similar customers and their
purchasing patterns. Yet, if you have 100 million customers it can take
hours to do similarity calculations on just 200 features. However, since
these calculations can be done in parallel, we show that using an FPGA
can allow these calculations to be done in under 30 msec. This session
will show how using TigerGraph User Defined Functions (UDF), similarity
calculations, and therefore product recommendations can be done in
real-time as customers visit your web site.

2

Overview

 Dan:

• What is graph similarity?

• Why is it critical in recommendation systems?

• Serial vs. Parallel algorithms

• Cosine similarity and graph embeddings

 Kumar:

• What is an FPGA?

• FPGA configuration used in our benchmarks

• Calling FPGA from TigerGraph using a User Defined Function

• Benchmark Results

 Summary: Both

3

About Dan

4

• Distinguished Engineer at Optum Healthcare
(330K employees and 32K technical staff)

• Focused on AI enterprise knowledge graphs
• Help create the worlds largest healthcare

graph
• Coauthor of book "Making Sense of NoSQL”
• Worked at Bell Labs as a VLSI circuit designer
• Worked for Steve Jobs at NeXT

Why Are Similarity Calculations Critical?

 Similarity is at the foundation of recommendation engines

 Recommendation engines power sites like:

• Google – recommend a document

• NetFlix™ – recommend a movie

• Amazon - recommend a product

• Pintrest™ – recommend an interest

• Healthcare – recommend a care path

Recommendations must take into account many factors
including recent searches

To be useful in interactive web sites we set a goal of
response times of under 200 milliseconds

5

Similarity

Recommendation

Next Best Action

Real-Time Patient Similarity

• Given a new patient that arrives a clinical setting, how can we quickly find the most similar patients?
• Assumption: we have 10M clinical records of our population of 235 million members
• Can we find the 100 most similar patients in under 200 milliseconds?

6

New Patient

Arrives in ER

Sample Patient Populations (10s of millions)

Which ones are
the most similar
to this patient?

Similarity Score – A scaled measure of “alikeness” for a context

• A single scaled dimension of comparison for a given setting or context
• Comparing a patient to itself would have a similarity score of 1.0
• Patients that have few common characteristics would have a score of 0.1

7

.43

.92

.1

Graph Representation of Patients – Includes Structure

8

Sample Patient Population (10M)

Target Patient

Graph Representation of Patients – Includes Structure

9

Sample Patient Population (10M)

Target Patient

How can I quickly compare these graphs and find the most similar patients?

Similarity score = .5

Similarity score = .9

Similarity score = .8

Serial vs. Parallel Graph Algorithms

• One task cannot begin before the prior task is
complete

• Task order is important

• Serial algorithms work well on traditional CPUs

• Many tasks can be done independently

• Task order in not relevent

• Tasks can usually be done faster on GPU or
FPGAs

10

Serial Graph Algorithms Parallel Graph Algorithms

Task Task TaskStart End

Task

Task

Task

Start End

The Human Brain Does Both Serial and Parallel Computation

Let’s use our brains as a demo!

 The following slide has photos of two people
• One is a famous actor
• The other is a synthetically generated image of a person (generated by a AI
program)

 How long will it take for you to recognize which one the famous actor?

11

Which photo is the famous actor?

12

What just happened?

1. Your visual cortex received the images as electrical signals from your eyes

2. Your brain identified key features of each face from the images - in parallel

3. Your brain sent these features as electrical signals to your memories of people’s faces

4. Your brain compared these features to every memory you have ever had of a person’s face – in
parallel

5. Your brain sent their recognition scores to a control center of your brain

6. Your brain’s speech center vocalized the word “right” – in series

13

Key Questions:

1. How does the brain know to pay attention to specific features of a face?
2. What portions of real-time clinical decision support systems can be done cost effectively in parallel?

Answer: The human brain, comprised of around 84B neurons, does both parallel and series calculations

Property-based Similarity Example

14

 Used to find the most similar items in a graph by comparing properties and structure

 Ideal when you a can compare individual features of an item numerically

 Algorithms return a ranking of similarity between a target an a population based on the counts and
weights of properties that are similar

Target
Patient

Population of 10M Patients

Vector Similarity

15

 Vectors are similar in two dimensional space if they have the same length and direction

 Compare all the “x” lengths and the “y” lengths and rank by the sum of the totals of the
difference

y

x
Population Vectors

Target
Vector 1st

last

Vector Representation

16

 Each item can be represented by a series of “feature” vectors

 The numbers are scalers

x=8
y=10

16
16

8
6

4
3

7
9

-4
6

-4
6

-12
-8

Target
Vector

Population
Vectors

Most similar

Least similar

Cosine Used in Comparing Direction

17

 The dot product of two vectors a and b (sometimes called the inner product, or, since its
result is a scalar, the scalar product) is denoted by a ∙ b and is defined as:

 If the lines are exactly in the same direction, then theta is 0, cos(0) = 1
 If the lines are 90 or -90 degrees apart they are in orthogonal directions cos(90) = 0

a

b

Why Vector Conversion

18

 Computers are very good at comparing numeric values

 Comparison of vectors is a well studied problem (weighted cosine similarity)

 Comparing a target vector to many other vectors (50M) is a class of “Embarrassingly Parallel” type problem that is perfect
for hardware acceleration using FPGAs

1
10

5
8

14
3
6

57
34
15

5
66

Input Target Vector

1
32

5
8

14
3
6

57
34
15

5
66

0
45

5
8

14
3
6

57
34
15

5
66

1
10

5
8

14
3
6

57
34
15

5
66

1
10

5
8

14
3
6

57
34
15

5
66 Top 100 Patient IDs

(Tigergraph 64 bit vertex IDs)
Returned in 100msec

Vector Comparison Hardware Service

…50M…

1234
3467
5546
8234
1423
…100
PIDs…

PIDs

200 32-bit integers

Can Machine Learning Tell us What Features are Important?

19

 Old way: manually create a program that will extract 200 integers
for each customer that classifies their behavior
• Age
• Gender
• Location
• Responsiveness to e-mail survey
• How proactive are they about their health?
• Likely to recommend your company
• Slow process requiring manual coding of feature extraction

rules

 New algorithms such as node2vec use a random walk algorithms
to automatically create the 200 integers that will help use
differentiate patients

Embedding: 200 32-bit integers

The Rise of Automatic Feature Engineering

20

Recent years have seen a surge in approaches that
automatically learn to encode graph structure into
low-dimensional embeddings.

The central problem in machine learning on graphs is finding a
way to incorporate information about the structure of the graph
into the machine learning model.

From Representation Learning on Graphs: Methods and Applications by Hamilton (et. al.)

Example of Graph Embedding – Encode and Decode

21

From Representation Learning on Graphs: Methods and Applications

Cosine Used in Comparing Direction

22

 The dot product of two vectors a and b (sometimes called the inner product, or, since its
result is a scalar, the scalar product) is denoted by a ∙ b and is defined as:

 If the lines are exactly in the same direction, then theta is 0, cos(0) = 1

 If the lines are 90 or -90 degrees apart they are in orthogonal directions cos(90) = 0

a

b

The Rise of Automatic Feature Engineering

23

Recent years have seen a surge in approaches that automatically learn
to encode graph structure into low-dimensional embeddings.

The central problem in machine learning on graphs is finding a way to
incorporate information about the structure of the graph into the machine
learning model.

From Representation Learning on Graphs: Methods and Applications by Hamilton et. El.

Example of Graph Embedding – Encode and Decode

24

From Representation Learning on Graphs: Methods and Applications by Hamilton et. El.

© Copyright 2020 Xilinx

About Kumar

• Distinguished Engineer at Xilinx Inc.
• Focused on Data Analytics Acceleration

• Architected and co-developed Xilinx Simulator, Vitis Profiler
and Debugger from scratch in prior assignments

• 20+ US patents

• Xilinx Inc:
• Inventor of FPGAs

• Leader in Adaptive Compute Acceleration

• ~4.8K employees, ~3B revenue, ~25 B market cap

© Copyright 2020 Xilinx

• Logic blocks
• Look-up tables – combinatorial logic
• Flip flops – sequential logic

• DSP (Digital Signal Processing)
‒ Pre-adder, Multiplier, Accumulator
‒ And, OR, NOT, NAND, NOR, XOR, XNOR
‒ Pattern Detector

• Writable Memory
• LUTRAM (Look-up table RAM)
• BRAM (Block RAM)
• URAM (Ultra RAM)

• Communication
• I/O, Transceiver, PCIe, Ethernet

• Programmable Interconnect

What is an FPGA (Field Programmable Gate Array)?

Credit: https://towardsdatascience.com/introduction-to-fpga-and-its-architecture-20a62c14421c

LUTs: 1.2 M
Flip-Flops: 2.4M
Writable Memory: 47 MB
DSP Units: 6800

Xilinx VU9P FPGA has:

© Copyright 2020 Xilinx

Configuring an FPGA

‘Unprogrammed’
configuration memory (SRAM cells)

Unconfigured
logic circuit

‘Programmed’
configuration memory (SRAM cells)

‘Configure
d’
logic circuit

Credit: ‘Bebop to the Boolean Boogie: An Unconventional Guide to Electronics’

Credit: https://www.researchgate.net/publication/288835032_FPGA_Implementation_of_CORDIC_Processor

SRAM Driving a pass transistors to
make connections

© Copyright 2020 Xilinx

High-Performance FPGA Applications: Think “Parallel”

� Data-level parallelism
� Processing different blocks of a data set in parallel

� Task-level parallelism
� Executing different tasks in parallel
� Executing different tasks in a pipelined fashion

� Instruction-level parallelism
� Parallel instructions (superscalar)
� Pipelined instructions

� Bit-level parallelism
� Custom word width

Task CTask B

Task A

Task D

© Copyright 2020 Xilinx>> 29

Computing Devices

CPU GPU FPGA ASIC
Example AMD EPYC 7702 NVIDIA A100 Xilinx Alveo U50 Google TPU

Architecture Instruction Set Instruction Set Domain Specific Domain Specific

Purpose General Purpose General Purpose Domain Specific Domain Specific

Workload Types Serialized
Workloads

Parallel
Workloads

Any workload Single Workload

Ease of
Programming

Easy Medium Medium No
programmability

Energy Efficiency Low Medium High Very High

© Copyright 2020 Xilinx

Using C, C++ or OpenCL to Program FPGAs

˃ Xilinx pioneered C to FPGA compilation technology (aka “HLS”) in 2011

˃ No need for low-level hardware description languages

˃ FPGAs are “Software Programmable”

loop_main:for(int j=0;j<NUM_SIMGROUPS;j+=2) {
 loop_share:for(uint k=0;k<NUM_SIMS;k++) {
 loop_parallel:for(int i=0;i<NUM_RNGS;i++) {
 mt_rng[i].BOX_MULLER(&num1[i][k],&num2[i][k],ratio4,ratio3);
 float payoff1 = expf(num1[i][k])-1.0f;
 float payoff2 = expf(num2[i][k])-1.0f;
 if(num1[i][k]>0.0f)
 pCall1[i][k]+= payoff1;
 else
 pPut1[i][k]-=payoff1;
 if(num2[i][k]>0.0f)
 pCall2[i][k]+=payoff2;
 else
 pPut2[i][k]-=payoff2;
 }
 }
}

FPGAVitis Compiler (v++)

© Copyright 2020 Xilinx

Software Programmability: FPGA Development in C/C++

PCI
e

x86 CPU

Host
Application

Runtime and Drivers

Acceleration API

FPGA

Accelerated
Functions

DMA Engine

AXI Interfaces

User
Application

Code

Xilinx
Acceleration

Platform

C/C++ code Synthesizable
C/C++

GCC VITIS

© Copyright 2020 Xilinx

U50 U200 U280U250

Cloud On-premise

Cosine
Similarity

HLS (C++)

TigerGraph

Xilinx Accelerated TigerGraph

>> 32

Vitis core
development kit

compilers

Math, Linear Algebra,
Database, Vision, AI,

Security Libraries

Vitis accelerated
libraries

Vitis drivers & runtime (XRT)

analyzers debuggers

Vitis target platforms

Graph Algorithms
and User Defined
Functions (UDFs)

© Copyright 2020 Xilinx

Benchmark: Similarity for 1.5 million patients

HPE DL385 Gen10+ server
2x AMD EPYC 7742 @ 2.2GHz

128 cores, 256 GB RAM

Xilinx Alveo U50 PCIE Accelerator Card
8GB HBM, 75W

Dataset: Synthetic patient data generated by “Synthea” (https://synthetichealth.github.io/synthea/)
Algorithm: Cosine Similarity (cos theta between property vectors)
Property Vector: 197 int properties for each patient

https://synthetichealth.github.io/synthea/

© Copyright 2020 Xilinx

Cosine Similarity: Accelerated Function
extern "C" void topKCosSim(uint32_t p_n, …, KVResType* p_res) {

…

 for (int i = 0; i < SPATIAL_numChannels; i++) {

#pragma HLS UNROLL

 patientInfoParse<>(p_n, p_m, l_strXs[i], l_dataX[i], l_normX[i]);

 patientInfoParse<>(p_n, p_m, l_strY[i], l_dataY[i], l_id[i], l_normY[i]);

 cos<SPATIAL_logParEntries, SPATIAL_macDataType,
SPATIAL_indexType>(p_n, p_m, l_dataX[i], l_dataY[i], l_normX[i], l_normY[i],
l_dis[i]);

 addKey<>(p_m, l_id[i], l_dis[i], l_pair[i]);

 }

 mergeStream<SPATIAL_numChannels>(p_m, l_pair, l_merge);

 maxK<SPATIAL_maxK>(p_m * SPATIAL_numChannels, p_k, l_merge, l_res);

 stream2mem<>(p_k, l_res, p_res);

}

v++ similarity.xclbin

© Copyright 2020 Xilinx

Cosine Similarity: Host Application
…

 for (unsigned int di = 0;di<deviceCount; di++){

 KVResType* l_res0_tmp;

 KVResType* l_res1_tmp;

 posix_memalign((void**)&l_res0_tmp, 4096, l_k * sizeof(KVResType));

 memset(l_res0_tmp, 0, l_k * sizeof(KVResType));

 posix_memalign((void**)&l_res1_tmp, 4096, l_k * sizeof(KVResType));

 memset(l_res1_tmp, 0, l_k * sizeof(KVResType));

 l_res0[di]=l_res0_tmp;

 l_res1[di]=l_res1_tmp;

 xfspatialSendMat(l_res0[di], l_k * sizeof(KVResType), 35, 1, di);

 xfspatialSendMat(l_res1[di], l_k * sizeof(KVResType), 32, 0, di);

 xfspatialTopKCosSim(appContext->m_vecX0, l_res0[di], l_n, l_m, l_k, 1, di);

 xfspatialTopKCosSim(appContext->m_vecX1, l_res1[di], l_n, l_m, l_k, 0, di);

 }

xfspatialExecuteKernelAsync(2, deviceCount);

…

Compile (g++) libxilinxsimilarity.so

© Copyright 2020 Xilinx

Integration with TigerGraph

<TG Install Dir>/dev/gdk/gsql/src/QueryUdf/ExprFunctions.hpp:
inline string udf_open_alveo(int mode) { … }
inline bool udf_close_alveo(int mode) { … }
inline bool udf_write_device(int mode) { … }
inline ListAccum<testResults>
udf_cosinesim_ss_alveo(ListAccum<int64_t>& patient_vector,
uint64_t topK) { … }

similarity.gsql:

open_alveo() { …; udf_open_alveo(1); …}
load_alveo() {…; udf_write_device(1); …}
close_alveo() { …; udf_close_alveo(1); …}
cosinesim_ss_alveo(newPatient, topK) { …; udf_cosinesim_ss_alveo(newPatient, topK); …}

libxilinxsimilarity.so (code to manage client requests)

Xilinx Runtime (PCIE driver and card management)

similarity.xclbin

© Copyright 2020 Xilinx

Demo: Similarity for 1.5 million patients

© Copyright 2020 Xilinx

Time (milli-seconds) to get top 100 similar patients

40x faster than CPU

Using one Alveo U50 Using 5 Alveo U50’s

400x faster than CPU

© Copyright 2020 Xilinx

Scaling with number of patients

Three General REST Services to Support Similarity

40

 Bulk Upload Data: input - millions of vectors; output – success/failure code

 Update Vector: input - vertex ID, 198 integers; output – success/failure code

 Find Similar: input - vertex ID, 198 integers; output – 100 vertex IDs (64 bits)

Similarity ServerREST GET Results (csv, JSON)

Onward to the Hardware Graph!

41

Single Node
Graph

Enterprise
Knowledge

Graph

Hardware
Graph

Data Hubs

Data Lake

Algorithmic
Richness

Scale out

Related Use Cases

42

 Recommendation Engines for Healthcare
• For any person calling in for a recommended provider or senior living facility, can we find similar

recommendations in the past?

 Incident Reporting
• When trouble ticket is reported, what are the most similar problems and what were their solutions?

 Errors in Log Files
• When there are are error messages in log files, how can we find similar errors and their solutions?

 Learning Content
• Can we recommend learning content for employees that have similar goals?

 Schema Mapping
• Automate the process of creating data transformation maps for new data to existing schemas

