
In-Database Machine
Learning for Big Data
Entity Resolution

DATA SCIENCE MINI-GUIDE

DATA SCIENCE MINI-GUIDE | IN-DATABASE MACHINE LEARNING FOR BIG DATA ENTITY RESOLUTION 2

The world is gathering data faster than it can make sense of it. According

to market intelligence company IDC, the “Global Datasphere” in 2018

reached 18 Zettabytes. One zettabyte is approximately equal to one billion

terabytes and more data is being generated at a faster pace every day.

The data being collected by organizations can, however, give a misleading

or fragmented view of the real world. A person, for example, could appear

multiple times (or have multiple digital entities) within the same database,

due to typos, name changes, aggregation of different systems and so on.

If we try to merge two databases, how do we match entities, when the ID

systems might be different or contain errors?

Entity resolution helps organizations get to the truth. Entity resolution,

which is the disambiguation of real-world entities in a database, is an

essential data quality tool for businesses wanting to see the full customer

journey, and to make the right recommendations, or for law enforcement

agencies trying to uncover criminal activity and the perpetrators.

Graph databases can help you disambiguate

The key task of entity resolution is to find and make linkages between

digital entities which refer to the same real-world entities. Graph is the

most intuitive, and as we will also show later, the most efficient data

structure used for connecting dots. Using graph, each digital entity or

attribute can be represented as a vertex, and the entity-has-attribute

relationships can be represented as edges. In such an entity-attribute

graph, when multiple entities share the same attributes, they will be linked

together by the graph (see Figure 1). By representing the entity-attribute

relationship as a graph, a variety of graph algorithms (e.g. cosine similarity,

Jaccard similarity, connected component, label propagation, Louvain) can

be performed for the task of entity resolution.

Machine Learning and
Entity Resolution

Entity resolution helps get
to the truth. Entity resolution,
which is the disambiguation
of real-world entities in a
database, is an essential
data quality tool.

Figure 1: Each vertex in the graph represents either an entity or an attribute. The edges represent the entity-has attribute
relationship. The graph links different entities together when they share common attributes. For example, Entity 3 and
Entity 5 are linked by Attribute 4 and Attribute 5.

ENTITY 1

ENTITY 2
ENTITY 3

ENTITY 4 ENTITY 5
Attr. 1

Attr. 2

Attr. 7

Attr. 2

Attr. 2

Attr. 2

Attr. 2

Attr. 2

Attr. 3

Attr. 4

Attr. 5

Attr. 6

https://www.seagate.com/files/www-content/our-story/trends/files/idc-seagate-dataage-whitepaper.pdf
https://www.seagate.com/files/www-content/our-story/trends/files/idc-seagate-dataage-whitepaper.pdf

DATA SCIENCE MINI-GUIDE | IN-DATABASE MACHINE LEARNING FOR BIG DATA ENTITY RESOLUTION 3

USER ACCOUNT USER EMAIL IP ADDRESS DEVICE ID PHONE

1 jojo@adv.com 18.207.48.62 2E-1D-ED-EC-D9-ED 181-481-4409

2 jj@adv.com 18.207.48.62 2E-1D-ED-EC-D9-ED 415-509-4062

3 jjoe@adv.com 18.207.48.62 2E-1D-ED-EC-D9-ED 505-316-1184

4 jjoe@adv.com 18.207.48.92 E3-5B-BC-03-0D-AC 312-921-5548

5 jj@adv.com 18.207.48.92 E3-5B-BC-03-0D-AC 312-921-5548

Solving the entity resolution problem with graph can be categorized

into two main steps, namely linking and grouping. In the linking stage,

graph algorithms, such as cosine similarity, Jaccard similarity, can be

applied for pairwise matching. Once two entities are matched, an edge

can be drawn between them to represent the same-as relationship.

The same-as relationship can be deterministic or probabilistic. In the

case of probabilistic relationships, a weighted edge can be used to

represent the likelihood of one entity being the same as the other entity.

In the grouping stage, the inserted same-as edges can greatly accelerate

the computation in which graph community detection algorithms, such

as connected component, label propagation, and Louvain, can be used to

group the digital entities by their real-world entities.

Graph provides an efficient approach for the entity resolution problem.

A native graph database with massive parallel computing capability is the

best tool to implement the approach. Solving entity resolution problems

by running queries in the database not only saves the time for exporting

the data to the other computing platform, but also addresses the

challenge of ever-growing data size and data update. Additionally, because

of the transitivity of the same-as relationship (i.e. if entity A is the same as

entity B, and entity B is the same as entity C, then entity A is also the same

as entity C), entity resolution requires multiplehop queries. Such queries

require multiple join operations which are computationally expensive

for relational database. A graph database, on the other hand, is the ideal

solution for the big data entity resolution task. In the next section, we will

show how to implement a TigerGraph solution for entity resolution.

TigerGraph is especially adept at uncovering the truth

Let’s examine a real-world example of how TigerGraph disambiguates

the users of movie streaming websites through some login information.

When people are logging into their account of a streaming website to

watch a movie, the website may collect some login information such as the

user account, user email used for account registration, IP address, physical

address (device ID), and login time. A movie streaming company can have

millions of user accounts and billions of login records. One person may

register multiple accounts and one account can be logged in with different

IP addresses, and devices. In this scenario, each user account is a digital

entity with multiple attributes. The entity resolution task is to link the

accounts to the real-world entity, a human user. Without loss of generality,

in this simplified example, we assume each login record contains the user

account, user email, IP address, device ID, and phone number (see Table

1). The five accounts in this toy example were actually registered by the

same person. Now let’s build a graph in TigerGraph to find this person.

Table 1: Sample entities for Joseph Joestar

Graph provides an efficient
approach for the entity
resolution problem. A native
graph database with
massive parallel computing
capability is the best tool to
implement the approach.

DATA SCIENCE MINI-GUIDE | IN-DATABASE MACHINE LEARNING FOR BIG DATA ENTITY RESOLUTION 4

Defining the graph schema

We need six types of vertices in this graph. The first type of vertex is for

the user accounts. Similarly, each of the four attributes, user email, phone,

IP address and device ID, can also be represented by a type of vertex. The

last type of vertex is the user. The grouping of the entities will be done by

connecting all the matching account vertices to the same user vertices.

For the edges, we have “has” edges between accounts and the attributes,

“Has Account” edges between users and their accounts, and “same as”

edge between users.

Loading Data

With the graph schema above, the data can be loaded to create the

entity-attribute graph. For each record, we will use the user account as

well as the attributes to create vertices, and connect the account vertex

with its attribute vertices. Figure 3 shows the graph created by the sample

data in table 1.

User_Has_Device

PHONE

DEVICE

EMAIL

IP

Has_Phone

Use
r_

Has_
Em

ail User_Has_Phone

Has_Device

User_Has_IP

Has_IP

H
a

s_
A

cco
unt

USER

ACCOUNT

Same_As

Has_Email

IP

Figure 2: TigerGraph Cloud Schema for the Starter Kit - In-Database Machine Learning for Big Data Entity Resolution

jj@adv.com

ACCOUNT
1

ACCOUNT
2

ACCOUNT
5

ACCOUNT
4

ACCOUNT
3

jojo@adv.com

jjoe@adv.com

312-921-5548

18.207.48.92

181-481-4409

415-509-4062

18.207.48.62

505-316-1184

2E-1D-ED-EC-
D9-ED

E3-5B-BC-03-
0D-AC

Figure 3: The graph created by loading the data in Table 1

https://www.tigergraph.com/starterkits/

DATA SCIENCE MINI-GUIDE | IN-DATABASE MACHINE LEARNING FOR BIG DATA ENTITY RESOLUTION 5

Running queries

We implement entity resolution as three queries: Initialization, linking

and grouping.

1. Initialization

The initialization query assumes each account is registered by a different

user and let the user inherit all the attributes of his account. For simplicity

purposes, figure 4 only shows the user-attribute relationships and does not

show the account vertices in the graph.

2. Linking

The linking query connects the entities that satisfy the matching condition.

In this example, let’s assume two accounts were registered by the same

person when they share at least two attributes. For example, account 1 and 3

were logged in both using the same IP address and device, thus we consider

they were registered by the same person (see figure 4). In this case, the

linking query traverses all the user - attribute - user paths and counts

how many attributes are shared for each pair of users. Lastly, the query

will insert an edge between two user vertices if they are linked by at least

two attributes.

jj@adv.com

USER 1

USER 2

USER 3
USER 4

USER 5

jojo@adv.com

jjoe@adv.com

312-921-5548

18.207.48.92

181-481-4409

415-509-4062

18.207.48.62

505-316-1184

2E-1D-ED-EC-
D9-ED

E3-5B-BC-03-
0D-AC

Figure 4: The initialization query creates users, one user per account

Figure 5: (a) In the above example, four same-as edges will be inserted between user (1, 2), (1, 3), (2, 3) and (4, 5) because each pair shares at least
two common attributes. The connections between user 1 and 2 are highlighted. (b) The graph of user-user relationship after inserting the
same-as edges in the linking query. For simplicity purposes, this figure does not show the account and attribute vertices in the graph.

jj@adv.com

USER 1

USER 2

USER 3
USER 4

USER 5 USER 1 USER 2 USER 5

USER 3 USER 4

jojo@adv.com

jjoe@adv.com

312-921-5548

18.207.48.92

Same as

Sa
m

e
a

s

Sam
e as Sa

m
e

a
s

181-481-4409

415-509-4062

18.207.48.62

505-316-1184

2E-1D-ED-EC-
D9-ED

E3-5B-BC-03-
0D-AC

DATA SCIENCE MINI-GUIDE | IN-DATABASE MACHINE LEARNING FOR BIG DATA ENTITY RESOLUTION 6

3. Grouping

After the linking query finishes, all the matching users will be connected.

The entity deduplication can be achieved by merging the connected user

vertices together. This can be done by performing the connected component

algorithm on the network formed by the user vertices and same-as edges.

Briefly, the connected component algorithm will find the connected entities

by assigning the same label to the entities in the same connected group.

The basic flow of the connected components algorithm is as follows:

1.	 Assign a unique integer as an ID to each entity.

2.	 Propagate this ID to its connected neighbors, so that each vertex will receive

all its neighbors’ IDs.

3.	 Update the old ID to be the smallest ID among its neighbors’ and its

own current ID.

4.	 Repeat above steps 2 and 3 until no ID update happens.

When iteration stops, the vertices in each connected component will

have the same ID. And this ID will be the smallest ID within the connected

component. The algorithm above not only finds the connected entities, but

also selects a “lead” entity within each connected group. The last step of the

grouping query is to let the lead entities inherit all the attributes in the group

and to remove the other entities. The graph of user-attribute relationships

after the grouping query finishes is shown in Figure 6.

In some use cases, multiple iterations are needed to repeat the linking -

grouping steps. For example (see figure 6) after we merge users 1, 2, 3 into

1, user 1 will have all the attributes from 2, 3 and itself. So user 1 can connect

to other entities that it did not in the last iteration, thus new groups can be

formed. Therefore, the linking and grouping shall be repeated until no more

same-as edge needs to be inserted.

jojo@adv.com

181-481-4409

USER 1

18.207.48.62

505-316-1184 2E-1D-ED-EC-
D9-ED

415-509-4062

USER 4

312-921-5548

18.207.48.92E3-5B-BC-03-
0D-AC

jj@adv.com

jjoe@adv.com

Figure 6: After the grouping query finishes, user 1, 2, 3 will be merged into user 1. user 4 and 5 will be merged into user 4.

DATA SCIENCE MINI-GUIDE | IN-DATABASE MACHINE LEARNING FOR BIG DATA ENTITY RESOLUTION 7

Key benefits of the solution

Data lineage
One key feature of the above solution is that all the linking and grouping

are operated on the user vertices (i.e. only the user vertices and the edges

connected to them will be inserted or deleted). By constraining the data

insertion/deletion within the user subgraph, the original account record

(i.e. the account vertices and their relationships to the attributes) will be

left untouched, thus the data lineage is well preserved.

Parallel computation
It is also worth mentioning that in all above steps the computation for

each vertex or edge can be run in parallel. For example, in the second step

of the connected component algorithm, one thread can handle one edge

computation where the ID of the source vertex is aggregated on the

target vertex. Similarly, in the third step, each vertex can have one thread

to update its old ID. Such a computation model can naturally fit into a

map-reduce framework.

Incremental update
In real practice, the batch process on all the data does not need to be

performed whenever new records are loaded into the database. The above

solution allows incremental updates where only new accounts (or old

accounts with updates) and the minimum amount of relevant old accounts

need to be processed. When having new data or streaming data loaded, the

pairwise matching only needs to be performed on the newly loaded account

vertices and the old account vertices that share the same attributes with

the newly loaded vertices. Such an optimization significantly reduces the

computational workload.

Generic description and solution for the problem

Clustering is a classic unsupervised machine learning problem. The linking

and grouping method described above converts the entity resolution

problem to a graph clustering problem. Specifically, in the linking stage,

an entity network is created. Then in the grouping stage, different graph

clustering algorithms can be used to group the connected entities together.

The connected component algorithm is a good choice when links are

deterministic and certain, but other graph clustering algorithms such as label

propagation and Louvain may be more suitable if the linkages are weighted

according to confidence. Since graph is an abstraction of relationships, the

graph solution in the above example can be easily adapted for other use

cases. Here we will list four more examples.

1. Flight ticket booking

An airline company can have millions of ticket booking records in the

database. Each booking record can include the ticket number, passenger

first/last name, email address, phone number, departure, destination as

well as other related information. One passenger may use different email

addresses, phone numbers, or names to book flight tickets. In this scenario,

each booking record is a digital entity with multiple attributes. The entity

resolution task is to link the tickets to the real-world entity, passenger.

Applying our approach above, we can create a graph with tickets connecting

to their attributes. Then we can traverse all pairs of tickets that share some

DATA SCIENCE MINI-GUIDE | IN-DATABASE MACHINE LEARNING FOR BIG DATA ENTITY RESOLUTION 8

common attributes and insert an edge between them if they are considered

to be booked by the same person. Lastly all the connected tickets will be

grouped together.

2. Owner of the device

More and more devices (e.g. smartphone, television and even refrigerator)

now have the capability to connect to the internet. For example, we can use

the device network activity records to find the devices that belong to the

same person. In each record, we have a timestamp, device id, IP address,

URL, and cookie. Following our 3-step approach above, we will first create a

graph using the device ID as the digital entity, and the IP address, URL and

cookie as the attributes of the entity. In this case, the timestamp information

can be stored on the edge between device and IP. In the initialization stage,

we will assume each device is owned by a different owner, and connect the

owner to the IP address of his device with the connection time range on

the edge. In the linking stage, an edge will be inserted between each pair of

owners if they were using the same IP during a period of time. Lastly in the

grouping stage, the connected owners will be merged together and their

devices will be assigned to the same owner.

3. Social media account

One person can have multiple social media accounts such as Instagram,

Facebook, and TikTok. Different accounts can be registered using different

user names, email addresses, and profile information. By adapting the

3-step approach above, we can also identify the real person behind different

social media accounts. The initialization step will be the same where we

assign a person to each account, and connect the account information to

that person. In the linking stage, different weights can be given to different

profile information entries (e.g. user name, email, age, gender). For each pair

of persons that share a sufficient amount of information, an edge will be

inserted between them with the weight sum of their common information

entries. In the grouping stage, the connected component algorithm can

be used to group the person vertices together if the total weight on their

connections is above a certain threshold.

4. Vehicle identification

Electronic toll collection can significantly reduce traffic congestion.

The signal from the IoT devices on the vehicle can be utilized to identify

the vehicle. For each toll sensor read, the signal from a variety of IoT

devices (GPS, RFID, WiFi, Bluetooth) on all the vehicles within a range can

be obtained. To identify which group of IoT devices are on the same vehicle,

when loading the toll sensor data, we can insert a vertex for each toll sensor

read, and connect this vertex to all the IoT device vertices in this read so

that the IoT devices on the same vehicle can be connected through multiple

sensor read vertices. In this example, the count of sensor reads where two

IoT devices are found can be used to draw linkage between the IoT devices.

DATA SCIENCE MINI-GUIDE | IN-DATABASE MACHINE LEARNING FOR BIG DATA ENTITY RESOLUTION 9

About TigerGraph
TigerGraph is the only scalable graph database for the enterprise. Based on the
industry’s first Native and ParallelGraph technology, TigerGraph unleashes the power
of interconnected data, offering organizations deeper insights and better outcomes.
TigerGraph fulfills the true promise and benefits of the graph platform by tackling the
toughest data challenges in real time, no matter how large or complex the dataset.
TigerGraph’s proven technology supports applications such as fraud detection, customer
360, MDM, IoT, AI and machine learning to make sense of ever changing big data, and is
used by customers including Amgen, China Mobile, Intuit, Wish and Zillow.

The company is headquartered in Redwood City, California, USA.
Follow TigerGraph on Twitter at @TigerGraphDB or visit www.tigergraph.com
© TigerGraph, Inc. 2022 All Rights Reserved.
WP-DSMG-IDMLFBDER-02-16-2022

Now is the time

We’ve shown that graph databases are a powerful tool for entity resolution

especially on a large data scale. We also introduced a general approach

for solving entity resolution tasks with graph algorithms, and discussed a

representative use case (i.e. linking multiple login accounts for a streaming

media service) in detail to show how the user entities can be resolved by

running three queries in the graph database.

Now is an ideal time for you to get started with graph databases. One of

the best ways to get started with graph analytics is with TigerGraph Cloud.

It’s free and you can create an account in a few minutes. Best of all it includes

the starter kit called “In-database Machine Learning for Big Data Entity

Resolution”, which covers the three step approach outlined in this document.

https://www.tigergraph.com/cloud/
https://www.tigergraph.com/starterkits/
https://www.tigergraph.com/starterkits/

