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Networks around us!
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Applications of DL on Graphs
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Applications of DL on Graphs
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Graphs: Common Language
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Our Collaborations

§ We work with many external organizations
§ Discuss and identify big problems
§ Obtain and anonymize data, get consent/IRB
Fundamental research, results in public domain
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New Ways of Thinking 
Working on real-world problems leads 
to new ways of thinking:
§ Incremental algorithmic improvements 

turn out not to be so important
§ More important is methodology and 

computational modeling of the domain
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Leads to new research that would be 
impossible in isolation

Jure Leskovec, Stanford University



Machine Learning Tasks
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Example: Node Classification
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Machine 
Learning

§ What users are going to churn?
§ What is the disease of a patient?
§ What are functions of proteins?



Machine Learning Lifecycle
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Network 
Data

Node 
Features

Learning 
Algorithm  Model

Downstream 
prediction task

Feature 
Engineering

Automatically 
learn the features

(Supervised) Machine Learning Lifecycle: 
This feature, that feature. 
Every single time!
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Graph Feature Engineering
§ Design features for nodes/links/graphs
§ Obtain features for all training data
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Two Pain Points: One
Data Scientist’s pain point #1: 
§ Data scientists have to hand encode 

features to solve prediction problems.
§ Hand encoding graph features is…
… complex and involves expensive queries
… error prone
… suboptimal
… labor intensive

Jure Leskovec (@jure), Stanford University 13



Two Pain Points: Two
Data Scientist’s pain point #2: 
§ Data is often incomplete.

§ Address Books, Follows, Interests, 
Protein Protein Interaction, Ancestry

§ Entity information is incomplete.
§ Predictions often entail completing the 

“missing information”.
§ Relational structure is often not leveraged 

due to scalability issues.
Jure Leskovec (@jure), Stanford University 14
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We are in the middle of 
a big revolution...



The Deep Learning Revolution
Breakthroughs in image recognition fueled 
by Convolutional Neural Networks.
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CNNs



Representation Learning
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But, modern 
deep learning toolbox 

is designed for 
sequences & grids



My Research
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How can we develop neural 
networks that are much more 

broadly applicable?

Graphs are the new frontier 
of deep learning



Goal: Representation Learning
Map nodes to d-dimensional 

embeddings such that similar nodes 
in the network are embedded close 

together

Jure Leskovec (@jure), Stanford University 20

representationnode

𝒇: 𝑢 → ℝ!

ℝ!
Feature representation, 

embedding

u
Learn a neural network



Deep Learning in Graphs

…
z

Input: Network

Predictions: Node labels, 
New links, Generated 
graphs and subgraphs
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Why is it Hard?
Networks are complex!

§ Arbitrary size and complex topological 
structure (i.e., no spatial locality like grids)

§ No fixed node ordering or reference point
§ Often dynamic and have multimodal features

22

vs.

Networks Images

Text
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Networks as computation graphs

Learn how to propagate 
information across the network

23Jure Leskovec (@jure), Stanford University

𝑖

Key idea: Network is a computation graph
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Each node defines a computation graph
§ Each edge in this graph is a 

transformation/aggregation function 
Scarselli et al. 2005. The Graph Neural Network Model. IEEE Transactions on Neural Networks. 

http://ieeexplore.ieee.org/document/4700287/
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Neural networks



Key Benefits of GraphSAGE
§ No manual feature engineering needed
§ End-to-end learning results in optimal 

features.
§ Any graph machine learning task:

§ Node-level, link-level, entire graph-level 
prediction

§ Scalable to billion node graphs!

Jure Leskovec (@jure), Stanford University 26



What are some 
applications of 
GraphSAGE?
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Computational Drug 
Discovery: Drug Side 

Effect Prediction
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Modeling Polypharmacy Side Effects with Graph Convolutional Networks. 
M. Zitnik, M. Agrawal, J. Leskovec. Bioinformatics, 2018.

https://cs.stanford.edu/people/jure/pubs/drugcomb-ismb18.pdf


Polypharmacy side effects
Many patients take multiple drugs to 

treat complex or co-existing diseases:
§ 46% of people ages 70-79 take more than 5 drugs
§ Many patients take more than 20 drugs to treat heart 

disease, depression, insomnia, etc.

Task: Given a pair of drugs predict 
adverse side effects

,

Prescribed 
drugs

Drug
side effect

30% 
prob.

65% 
prob.

29Jure Leskovec (@jure), Stanford University



Approach: Link Prediction

30

r! Edge type 𝑖
Drug node

Protein node

Drug-drug 
interaction of type 𝑟!, 
e.g., nausea

Drug-target interaction

Protein-protein interaction
Jure Leskovec (@jure), Stanford University



Results: Side Effect Prediction

36% average in AP@50 improvement over baselines
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De novo Predictions
Drug c Drug d
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De novo Predictions
Evidence foundDrug c Drug d

33Jure Leskovec (@jure), Stanford University



Predictions in the Clinic
Clinical validation via drug-drug 
interaction markers, lab values, and 
surrogates
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First method to predict side effects of drug pairs, even 
for drug combinations not yet used in patients

Jure Leskovec (@jure), Stanford University



Massive Social Networks:
Example of Pinterest
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Graph Convolutional Neural Networks for Web-Scale Recommender Systems. R. Ying, R. 
He, K. Chen, P. Eksombatchai, W. L. Hamilton, J. Leskovec. KDD, 2018.

https://cs.stanford.edu/people/jure/pubs/pinsage-kdd18.pdf


Pinterest

§ 300M users
§ 4+B pins, 2+B boards

Jure Leskovec (@jure), Stanford University 36



Under review as a conference paper at ICLR 2019

sum - multiset

>
mean - distribution max - set

>
Input

Figure 2: Ranking by expressive power for sum, mean and max-pooling aggregators over a multiset.
Left panel shows the input multiset and the three panels illustrate the aspects of the multiset a given
aggregator is able to capture: sum captures the full multiset, mean captures the proportion/distribution
of elements of a given type, and the max aggregator ignores multiplicities (reduces the multiset to a
simple set).

vs.

(a) Mean and Max both fail

vs.

(b) Max fails

vs.

(c) Mean and Max both fail

Figure 3: Examples of simple graph structures that mean and max-pooling aggregators fail to
distinguish. Figure 2 gives reasoning about how different aggregators “compress” different graph
structures/multisets.

existing GNNs instead use a 1-layer perceptron � �W (Duvenaud et al., 2015; Kipf & Welling, 2017;
Zhang et al., 2018), a linear mapping followed by a non-linear activation function such as a ReLU.
Such 1-layer mappings are examples of Generalized Linear Models (Nelder & Wedderburn, 1972).
Therefore, we are interested in understanding whether 1-layer perceptrons are enough for graph
learning. Lemma 7 suggests that there are indeed network neighborhoods (multisets) that models
with 1-layer perceptrons can never distinguish.

Lemma 7. There exist finite multisets X1 6= X2 so that for any linear mapping W ,P
x2X1

ReLU (Wx) =
P

x2X2
ReLU (Wx) .

The main idea of the proof for Lemma 7 is that 1-layer perceptrons can behave much like linear
mappings, so the GNN layers degenerate into simply summing over neighborhood features. Our
proof builds on the fact that the bias term is lacking in the linear mapping. With the bias term and
sufficiently large output dimensionality, 1-layer perceptrons might be able to distinguish different
multisets. Nonetheless, unlike models using MLPs, the 1-layer perceptron (even with the bias term)
is not a universal approximator of multiset functions. Consequently, even if GNNs with 1-layer
perceptrons can embed different graphs to different locations to some degree, such embeddings may
not adequately capture structural similarity, and can be difficult for simple classifiers, e.g., linear
classifiers, to fit. In Section 7, we will empirically see that GNNs with 1-layer perceptrons, when
applied to graph classification, sometimes severely underfit training data and often underperform
GNNs with MLPs in terms of test accuracy.

5.2 STRUCTURES THAT CONFUSE MEAN AND MAX-POOLING

What happens if we replace the sum in h (X) =
P

x2X f(x) with mean or max-pooling as in GCN
and GraphSAGE? Mean and max-pooling aggregators are still well-defined multiset functions because
they are permutation invariant. But, they are not injective. Figure 2 ranks the three aggregators by
their representational power, and Figure 3 illustrates pairs of structures that the mean and max-pooling
aggregators fail to distinguish. Here, node colors denote different node features, and we assume the
GNNs aggregate neighbors first before combining them with the central node.

In Figure 3a, every node has the same feature a and f(a) is the same across all nodes (for any
function f ). When performing neighborhood aggregation, the mean or maximum over f(a) remains
f(a) and, by induction, we always obtain the same node representation everywhere. Thus, mean and
max-pooling aggregators fail to capture any structural information. In contrast, a sum aggregator
distinguishes the structures because 2 · f(a) and 3 · f(a) give different values. The same argument
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Application: Pinterest
PinSage graph convolutional network:
§ Goal: Generate embeddings for nodes in a large-

scale Pinterest graph containing billions of objects
§ Key Idea: Borrow information from nearby nodes

§ E.g., bed rail Pin might look like a garden fence, but 
gates and beds are rarely adjacent in the graph

§ Pin embeddings are essential to various tasks like 
recommendation of Pins, classification, ranking
§ Services like “Related Pins”, “Search”, “Shopping”, “Ads”

Jure Leskovec (@jure), Stanford University 37
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Pin Recommendation
Task: Recommend related pins to users

Source pin

8

Predict whether two nodes in a graph are related

Task: Learn node 
embeddings 𝑧" such 
that
𝑑 𝑧#$%&', 𝑧#$%&(
< 𝑑(𝑧#$%&', 𝑧)*&$+&,)

𝑧

Jure Leskovec (@jure), Stanford University



PinSAGE Example
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Results

Query

PinSAGE

Jure Leskovec (@jure), Stanford University 40



Reasoning in Incomplete 
Knowledge Graphs

41

Beta Embeddings for Multi-Hop Logical Reasoning in Knowledge Graphs. H. Ren, J. 
Leskovec. Neural Information Processing Systems (NeurIPS), 2020.
Identification Of Disease Treatment Mechanisms Through The Multiscale Interactome. 
C. Ruiz, M. Zitnik, J Leskovec. Nature Communications, 2021.

https://cs.stanford.edu/people/jure/pubs/betae-neurips20.pdf
https://cs.stanford.edu/people/jure/pubs/multiscale-natcomm21.pdf


Knowledge Graphs
Knowledge in a graph form:

§ Captures entities, types, and relationships

42Jure Leskovec (@jure), Stanford University

Node types: drug, disease, adverse event, protein, pathway
Relation types: has_func, causes, assoc, treats, is_a



Overview of Our Framework
Goal: Complex predictions in KGs
E.g.: “Predict drugs C
likely target proteins
P associated with 
diseases d1 and d2”.

Jure Leskovec (@jure), Stanford University 43

Knowledge graph

Predictive query



Example: Drug Discovery

Jure Leskovec (@jure), Stanford University 44

zA

zB

1. Start with embeddings of 
diseases A and B

Query: “Predict drugs C likely target proteins
P associated with diseases A and B”

B

A
P C



Example: Drug Discovery
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zA

2. Project according to the 
“associated” relation

Proteins likely to 
be associated
with disease A

Proteins likely to 
be associated
with disease B

Passoc

Passoc

Jure Leskovec (@jure), Stanford University

Query: “Predict drugs C likely target proteins
P associated with diseases A and B”

B

A
P C

zB



Example: Drug Discovery
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zA
Passoc

Passoc

Jure Leskovec (@jure), Stanford University

Query: “Predict drugs C likely target proteins
P associated with diseases A and B”

B

A
P C

zB

3. Take intersection of the 
tweet embeddings

Proteins likely to be 
associated with both 

diseases A and B



Example: Drug Discovery
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zA
Passoc

Passoc

Jure Leskovec (@jure), Stanford University

Query: “Predict drugs C likely target proteins
P associated with diseases A and B”

B

A
P C

zB

4. Project according to 
the “target” relation

Nearest neighbors are 
drugs likely to target 

proteins associated with 
both drugs A and B

P
target
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Beta Embeddings for Multi-Hop Logical Reasoning in Knowledge Graphs. H. Ren, J. 
Leskovec. Neural Information Processing Systems (NeurIPS), 2020.
Identification Of Disease Treatment Mechanisms Through The Multiscale Interactome. 
C. Ruiz, M. Zitnik, J Leskovec. Nature Communications, 2021.

https://cs.stanford.edu/people/jure/pubs/betae-neurips20.pdf
https://cs.stanford.edu/people/jure/pubs/multiscale-natcomm21.pdf


How can this technology 
be used for other problems?

Many other applications: 
§ Fraud and Anomaly Detection
§ Graph generation
§ Common sense reasoning

We can now apply neural networks 
much more broadly

New frontiers beyond classic neural networks 
that learn on images and sequences

49Jure Leskovec (@jure), Stanford University



(1) Fraud & Intrusion Detection
Fraud and intrusion detection in 
dynamic transaction graphs

Financial networks
Communication networks

50



(2) Targeted Molecule Generation

Jure Leskovec, Stanford University 51

Goal: Generate molecules that optimize a 
given property (Quant. energy, solubility)
Solution: Combination of
§ Graph representation learning
§ Adversarial training
§ Reinforcement learning

Graph Convolutional Policy Network for Goal-Directed Molecular Graph Generation. J. You, B. Liu, R. Ying, V. Pande, J. Leskovec, NeurIPS 2018.

https://arxiv.org/pdf/1806.08804.pdf


(3) Resoning with Programs

Jure Leskovec (@jure), Stanford University 52

Language-agnostic Representation Learning Of Source Code From Structure And Context. D. Zugner, T. 
Kirschstein, M. Catasta, J. Leskovec, S. Gunnemann. International Conference on Learning Representations 
(ICLR), 2021.

https://cs.stanford.edu/people/jure/pubs/sourcecode-iclr21.pdf


(4) Common Sense Reasoning

Jure Leskovec (@jure), Stanford University 53

QA-GNN: Reasoning with Language Models and Knowledge Graphs for Question Answering. M. Yasunaga, H. 
Ren, A. Bosselut, P. Liang, J. Leskovec. North American Chapter of the Association for Computational 
Linguistics (NAACL), 2021.

https://cs.stanford.edu/people/jure/pubs/qagnn-naacl21.pdf


Summary
GraphSAGE brings the power of deep 
learning to graphs!
§ Fuses node features & graph info

§ State-of-the-art accuracy graph machine 
learning tasks

§ Model size independent of graph size; 
can scale to billions of nodes
§ Largest embedding to date (3B nodes, 20B edges)

§ Leads to significant performance gains
Jure Leskovec (@jure), Stanford University 54



Conclusion
Results from the past 2-3 years have shown:
§ Representation learning paradigm can be 

extended to graphs
§ No feature engineering necessary
§ Can effectively combine node attribute data 

with the network information
§ State-of-the-art results in a number of 

domains/tasks
§ Use end-to-end training instead of 

multi-stage approaches for better performance
Jure Leskovec (@jure), Stanford University 55
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