

Accelerate AI with Graph Algorithms

Beyond Context: Answering Deeper Questions by Combining Spark NLP and Graph Database Analytics

Abhishek Mehta - Director Sales Engineering (TigerGraph) Christian Kasim Loan - Senior Data Scientist (John Snow Labs)

Today's Presenter: Christian Kasim Loan

- Distributed AI Lab(DAI), Daimler-Lab, CKL-IT (Consulting Company) Founder
- 10+ years, Architected and implemented various cloud agnostic big data systems and frameworks
- Creator of the NLU library
- Email: christian@johnsnowlabs.com

Leader in AI & Healthcare with NLP, OCR and AI Plattform

Founded in 2015, fully remote

- Customers like Intel. Johnson & Johnson, Roche, and Kaiser Permanente
- Most used NLP library and Leader in AI & Healthcare, won various awards
- Cloud Agnostic Service, on-prem, Python / Java / Scala / R API's
- **Key Terms**: State of the art NLP & NLU, Spark, Big Data, Healthcare AI solutions

Today's Presenter: Abhishek Mehta

Abhishek Mehta
Director of Field Engineering

- McKinsey, Bloomberg, Cisco & Dabizmo (NLP Startup) Founder
- 15+ years designing and implementing complex analytics solutions for Fortune 100 companies
- Patents in NLP spanning Conceptunary Ontology Design, Language Pattern Recognition, and Conversion
- Email: abhi@tigergraph.com

Native Graph with MPP Architecture

Founded in 2012, Redwood City, CA

- World's top 7/10 banks, biggest healthcare company, biggest BioTech Company, biggest utilities company as customers
- Raised 105 Million \$ as Series C in Feb 2021
- Available on-prem, DBaaS, on AWS, GCP, Azure
- Key Terms: OLAP + OLTP, Distributed Graph, ACID Compliant, Terabytes of scale

Graph NLU - Business Context

Gartner expected global revenue of BI to be \$22.8 billion by 2020, and Reuters foresees additional growth to \$29.48 billion by 2022.

In 2020, The global text analytics market was valued at USD 5.46 billion; 20% CAGR

80% of Business Data is unstructured

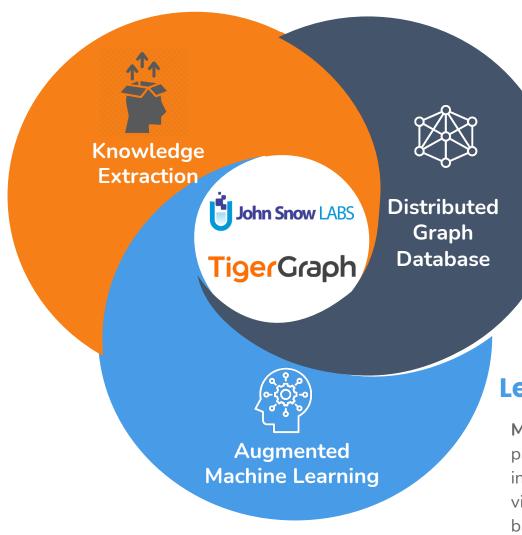
Graph NLU - Combining Spark NLP & TigerGraph

Knowledge Extraction/NLU

360 Applications : PII, EHR, Similarity Detection, Appointments, Health Plan Details, Visits, Tests, Communications, Patient Journey

Rx/Dx Data: Prescriptions,
Prescriber Notes, Generics, Detecting
Fraud e.g Opioid Fraud

Life Sciences: Find CoMorbidities Genes, path between Disease X & Protein Y.



Connected Data

Graph Data Connectivity : Compliance, Regulations, Security

Scale: Friction-free scale up from GB to TB to PB with **lowest cost of ownership**

Speed: MPP Architecture, Ad Hoc Analysis

Learn From Connected Data

ML/Analytics: Deep Link Multi-Hop Analytics, pattern recognition,, data mining techniques including link and association analysis, visualization, and predictive analytics oe as basic as Frequency distributions

Member Name:Doris Smith

Gender: Female Age: 78

DOB: 04/17/41

Phone Number: (650) 888-9090

Email: dsmith41@gmail.com

Home Address: 3 Main St.

Redwood City, CA 94065

Find Similar Members

Clinical Named Entity Recognition (NER)

A 28-year-old female with a history of gestational diabetes mellitus diagnosed eight years prior to presentation and subsequent type two diabetes mellitus (T2DM), one prior episode of HTG-induced pancreatitis three years prior to presentation, associated with an acute hepatitis, and obesity with a body mass index (BMI) of 33.5 kg/m2, presented with a oneweek history of polyuria, polydipsia, poor appetite, and vomiting. Two weeks prior to presentation, she was treated with a five-day course of amoxicillin for a respiratory tract infection. She was on metformin, glipizide, and dapagliflozin for T2DM and atorvastatin and gemfibrozil for HTG. She had been on dapagliflozin for six months at the time of presentation. Physical examination on presentation was significant for dry oral mucosa; significantly, her abdominal examination was benign with no tenderness, guarding, or rigidity. Pertinent laboratory findings on admission were: serum glucose 111 mg/dl, bicarbonate 18 mmol/l, anion gap 20, creatinine 0.4 mg/dL, triglycerides 508 mg/dL, total cholesterol 122 mg/dL, glycated hemoglobin (HbA1c) 10%, and venous pH 7.27. Serum lipase was normal at 43 U/L. Serum acetone levels could not be assessed as blood samples kept hemolyzing due to significant lipemia. The patient was initially admitted for starvation ketosis, as she reported poor oral intake for three days prior to admission. However, serum chemistry obtained six hours after presentation revealed her glucose was 186 mg/dL, the anion gap was still elevated at 21, serum bicarbonate was 16 mmol/L, triglyceride level peaked at 2050 mg/dL, and lipase was 52 U/L. The β-hydroxybutyrate level was obtained and found to be elevated at 5.29 mmol/L - the original sample was centrifuged and the chylomicron layer removed prior to analysis due to interference from turbidity caused by lipemia again.

The patient was prescribed 1 capsule of Advil for 5 days. He was seen by the endocrinology service and she was discharged on 40 units of insulin glargine at night, 12 units of insulin lispro with meals, and metformin 1000 mg two times a day. It was determined that all SGLT2 inhibitors should be discontinued indefinitely fro 3 months.

Color codes: FREQUENCY, DOSAGE, DURATION, DRUG, FORM, STRENGTH,

Label	Concept	Description
DOSAGE	1-2, sliding scale, taper, bolus, thirty (30) ml	The total amount of a drug administered
DRUG	aspirin, lisinopril, prednisone, vitamin b, flagyl	Generic or brand name of the medication
DURATION	for 3 days, 7 days, chronic, x5 days, for five more days	The length of time that the drug was prescribed for
FORM	tablet, capsule, solution, puff, adhesive patch, disk with device	A particular configuration of the drug which it is marketed for use
FREQUENCY	once a day, b.i.d., prn, q6h, hs, every six (6) hours as needed	The dosage regimen at which the medication should be administered
ROUTE	iv, p.o. (by mouth), gtt, nasal canula, injection,	The path by which the drug is taken into the body
STRENGTH	5mg, 100 unit/ml, 50mg/2ml, 0.05%, 25-50mg	The amount of drug in a given dosage

A . Record date : 2093-01-13 , David Hale , M.D . , Name : Hendrickson , Ora MR . # 7194334

Date: 01/13/93 PCP: Oliveira, 25 years-old, Record date: 2079-11-09. Cocke County

Baptist Hospital . 0295 Keats Street

Color codes: STREET, DOCTOR, AGE, HOSPITAL, PATIENT, DATE, MEDICALRECORD,

Color codes: PROBLEM, TREATMENT, TEST

© 2020. ALL RIGHTS RESERVED. | TIGERGRAPH.COM | CONFIDENTIAL INFORMATION |

Pre & Post NLU - Connected Data Challenge

1. Data silos

2. Highly variable data

3. Data formats

- 4. Terminology
- 5. Intercompany trust

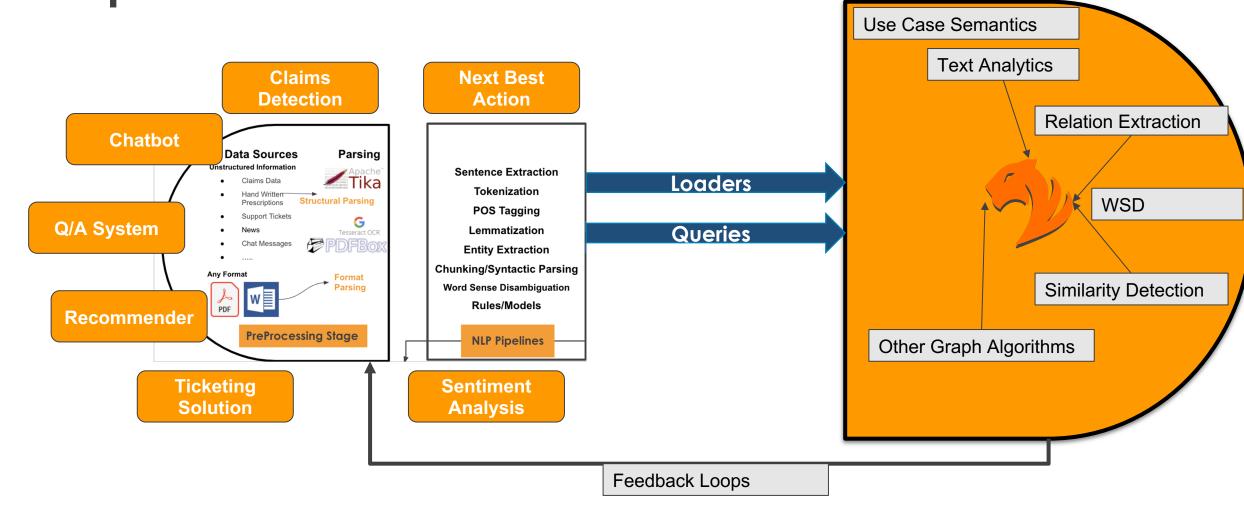
6. Data privacy

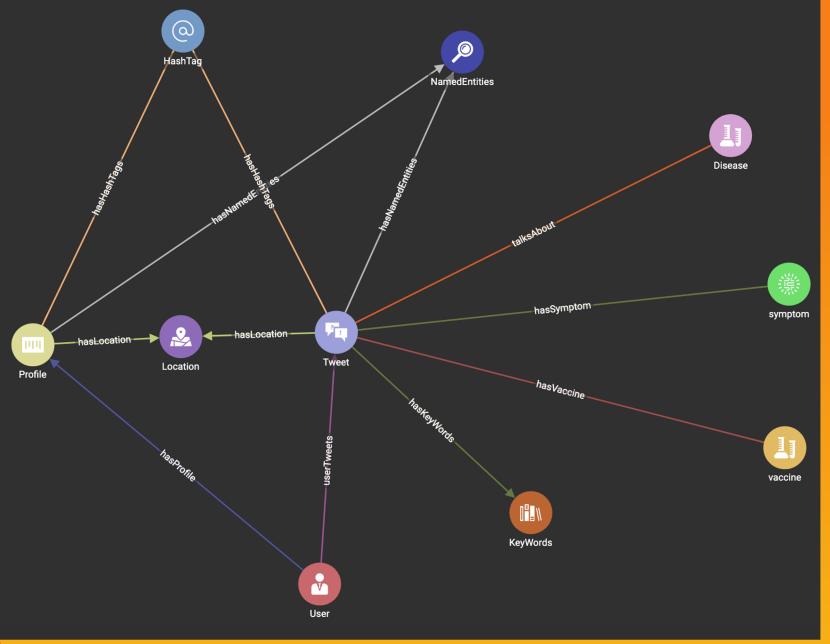
- 7. Complex rules
- Chatbots and search
- 9. Machine learning & explainability

Patients Research Lab/Biomarkers Sales/Consu experience mption Genomics Clinical Claims Pharmacy trials M Social media Devices Reference data Chart Multi sources Claims Review 10m Institutions/ **EMR** Data **Health Systems** Registries Trial Extraction, Imaging registries Curation. PRO ******** Privacy and Security Mortality Prescriptions **Technologies** 盖 Countries Ā, Checklist Sales Wholesalers Research **Physicians** experience Reference data

10.Scale

Graph NLU- Learn from Connected <u>Data</u>

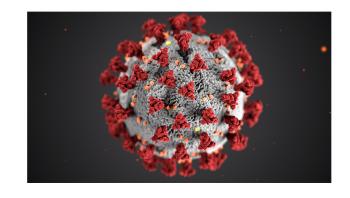




UseCase

The COVID dataset

- https://www.kaggle.com/smid80/coronavirus-covid19-tweets-late-april
- https://www.kaggle.com/smid80/coronavirus-covid19-tweets-early-april
- https://www.kaggle.com/gpreda/pfizer-vaccine-tweets
- https://www.kaggle.com/gpreda/all-covid19-vaccines-tweets
- 5.6 Million Tweets collected



user_name	user_location	user_created	user_followers	user_friends	user_favourites	user_verified	date	text	hashtags	source	is_retweet	tweet_id
IMSS_SanLuis	па	2017-05-04T22:00:38Z	1008	41	300	False	2020-03-29T00:00:00Z	Ante cualquier enfermedad respiratoria, no te	['#PrevenciónCoronavirus', '#Coronavirus', '#C	TweetDeck	False	0
intrac_ccs	па	2019-05-08T01:21:16Z	90	316	1030	False	2020-03-29T00:00:00Z	#ATENCIÓN En el Terminal Nuevo Circo se implem	['#ATENCIÓN', '#Coronavirus', '#28Marzo']	TweetDeck	False	1
rlieving	па	2009-10-08T21:06:08Z	136	457	604	False	2020-03-29T00:00:00Z	"People are just storing up. They are staying	['#minneapolis', '#mn', '#covid19', '#coronavi	TweetDeck	False	2
Tu_IMSS_Coah	па	2017-01-05T18:17:00Z	1549	170	1827	False	2020-03-29T00:00:00Z	Si empezaste a trabajar, necesitas dar de alta	['#IMSS,', '#SanaDistancia', '#QuédateEnCasa',	TweetDeck	False	3
Tabasco_IMSS	па	2016-10-19T22:05:03Z	868	125	723	False	2020-03-29T00:00:00Z	Una sociedad informada está mejor preparada an	['#Coronavirus', '#COVID19']	TweetDeck	False	4
SSalud_mx	na.	2010-04-12T16:53:45Z	812318	212	3954	True	2020-03-29T00:00:00Z	¡#Infórmate! #ConferenciaDePrensa sobre el #Co	['#Infórmate!', '#ConferenciaDePrensa', '#Coro	TweetDeck	False	5
AmerMedicalAssn	па	2009-03-31T17:50:31Z	714952	6877	2894	True	2020-03-29T00:00:00Z	.@PatriceHarrisMD spoke with @YahooFinance abo	['#COVID19', '#pandemic']	Sprinklr	False	6
CGTNOfficial	па	2013-01-24T03:18:59Z	14040072	55	65	True	2020-03-29T00:00:00Z	First medical team aiding #Wuhan in fight agai	['#Wuhan', '#COVID19', '#CoronavirusOutbreak']	Twitter Media Studio	False	7
Alaraby_Sport	na	2014-06-05T09:50:31Z	36953	1003	36	True	2020-03-29T00:00:00Z	هكذا ساهم نجم كرة القدم العالمية والفرنسية، كي	['COVID19', 'كورونا [©] ', '#معاً_نعزل_كورونا#']	TweetDeck	False	8
OnTopMag	па	2010-01-27T05:23:15Z	5042	5389	2658	False	2020-03-29T00:00:00Z	.@KathyGriffin: @realDonaldTrump Is 'Lying' Ab	['#Coronavirus', '#covid19', '#lgbt']	Twitter for Advertisers	False	9
ContraReplicaMX	па	2018-09-19T19:40:04Z	13287	2559	5671	False	2020-03-29T00:00:00Z	A pesar de la contingencia sanitaria provocada	['#Covid19,']	TweetDeck	False	10
SSC_Pue	na.	2010-03-10T20:04:51Z	297013	223	1726	False	2020-03-29T00:00:00Z	Ya sea a pie, en vehículo y hasta por espacio	['#COVID19.', '#QuédateEnCasa.']	TweetDeck	False	11
uri_911	na	2020-03-17T13:09:13Z	66	74	441	False	2020-03-29T00:00:00Z	#VEN911Oficial #28Mar Es muy importante que	['#VEN911Oficial', '#28Mar', '#Covid19']	TweetDeck	False	12
SecAytoPue	na.	2018-02-08T19:51:52Z	2251	788	312	False	2020-03-29T00:00:00Z	¿Qué es el coronavirus 🎒 , y cuáles son sus prin	['#COVID19']	TweetDeck	False	13
livemint	па	2008-11-27T09:07:38Z	1862858	127	474	True	2020-03-29T00:00:00Z	#CoronaUpdate Johns Hopkins University has s	['#CoronaUpdate', '#Covid19']	TweetDeck	False	14
DiarioLibre	па	2009-04-23T15:23:32Z	1185042	23738	321	True	2020-03-29T00:00:00Z	#Coronavirus EEUU aprueba test de coronavi	['#Coronavirus', '#DL', '#DiarioLibre', '#Actu	TweetDeck	False	15
lahoraecuador	na	2010-07-16T13:33:27Z	534729	1696	2384	False	2020-03-29T00:00:00Z	Debido a la emergencia sanitaria que vive el p	['#Ecuador', '#Covid19']	TweetDeck	False	16
ABSCBNNews	na.	2008-08-16T10:09:33Z	6767144	1075	1073	True	2020-03-29T00:00:00Z	Singapore donates 40,000 test kits to the Phil	['#COVID19']	TweetDeck	False	17
dailyaajupdates	na	2016-12-05T08:39:18Z	1325	32	18	False	2020-03-29T00:00:00Z	سعودی حکام نہ امسال حج کہ حوالہ سہ افوا ہوں کو	['#DailyAAJUpdates', '#dailyaaj', '#COVID2019'	TweetDeck	False	18
RadioNLNews	na.	2010-07-27T16:17:02Z	6929	2137	498	False	2020-03-29T00:00:00Z	It's been a remarkable week for bold policy an	['#COVID19', '#bcpoli', '#canpoli', '#Kamloops']	TweetDeck	False	19
ElSoldeSinaloa_	na	2014-05-25T04:53:23Z	2794	458	187	False	2020-03-29T00:00:00Z	#PorSiNoLoViste\nSe diseñó una estrategia para	['#PorSiNoLoViste', '#UAS', '#Casa', '#Clases'	TweetDeck	False	20
techreview_es	na.	2009-01-26T22:41:17Z	27514	265	13589	True	2020-03-29T00:00:00Z	#LoMásLeidoMarzo Esta 'app' del MIT te avisa	['#LoMásLeídoMarzo', '#coronavirus', '#COVID19	TweetDeck	False	21
imssjalcontigo	na	2014-06-05T13:46:44Z	3869	634	1530	False	2020-03-29T00:00:00Z	#PrevenciónCoronavirus ¿Sabías que al estorn	['#PrevenciónCoronavirus', '#EnfermedadesRespi	TweetDeck	False	22
alaraby_ar	na.	2014-03-10T11:35:38Z	936679	21	101	True	2020-03-29T00:00:00Z	مصر بعد أن بقي ملقتُ في الشارع لساعات أمام#	COV#' ,'مصر', '#كورونا", '#معاً_نعزل_كورونا#']	TweetDeck	False	23
889Noticias	па	2009-05-06T21:09:11Z	262891	164	476	True	2020-03-29T00:00:00Z	El Secretario Nacional de la @ONU_es anunció l	['#NuevaYork', '#COVID19', '#EstadosUnidos']	TweetDeck	False	24
SomosLJA	na	2009-05-02T20:35:21Z	20129	927	2307	False	2020-03-29T00:00:00Z	#LoMásVistoEnLJA TREINTAÑEROS Y VEINTEAÑEROS	['#LoMásVistoEnLJA', '#COVID19']	TweetDeck	False	25
Construit des		0000 04 00710-FF-007	227224	200	47	Ŧ	0000 00 00700-00-007	Afficiation and the first section of the first	fer recovers d	T	F-I	00

Introducing Spark NLP

State of the art NLP:

- 1. Accuracy
- Speed
- 3. Scalability

Open-Source Python, Java & Scala <u>Libraries</u> 200+ Pre-Trained <u>Models</u> & <u>Pipelines</u> Vibrant: <u>26 new releases in 2018, 28 in 2019</u> Daily ~ 20K Monthly ~ 600K

https://pypi.org/project/spark-nlp

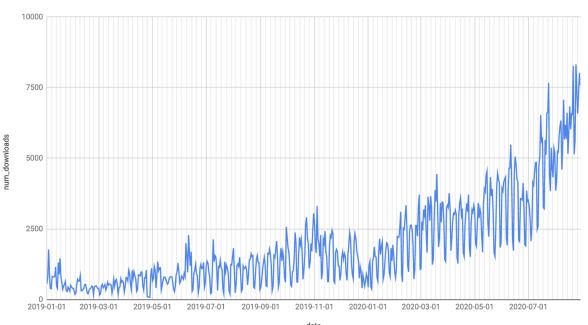
Total downloads 3,976,595

Total downloads - 30 days 656,474

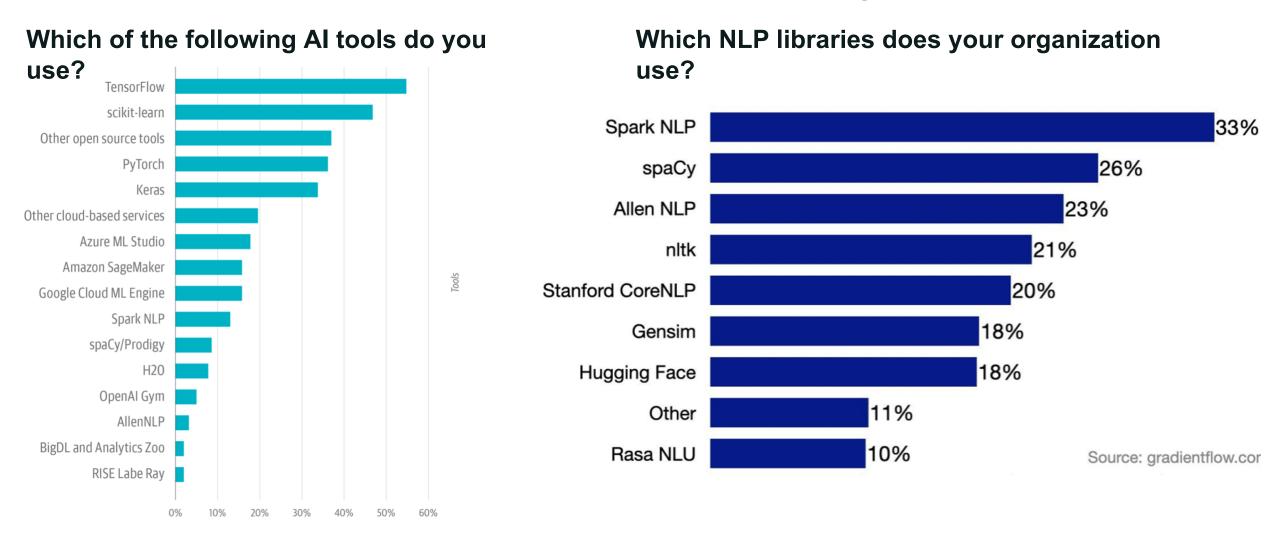
Total downloads - 7 days 152,742

num_downloads vs date

PyPI link



Spark NLP in Industry



NLP Industry Survey by Gradient Flow,

an independent data science research & insights company, September 2020

Biomedical Named Entity Recognition at Scale

Spark NLP: Natural Language Understanding at Scale

Veysel Kocaman, David Talby

John Snow Labs Inc. 16192 Coastal Highway Lewes, DE, USA 19958 eysel, david}@johnsnowlabs.com

Veysel Kocaman John Snow Labs Inc. 16192 Coastal Highway Lewes, DE, USA 19958 veysel@johnsnowlabs.com

Abstract-Named entity recognition (NER) is a widely applicable natural language processing task and building block of question answering, topic modeling, information retrieval, etc. In the medical domain, NER plays a crucial role by extracting meaningful chunks from clinical notes and reports, which are then fed to downstream tasks like assertion status detection, entity resolution, relation extraction, and de-identification. Reimplementing a Bi-LSTM-CNN-Char deep learning architecture on top of Apache Spark, we present a single trainable NER model that obtains new state-of-the-art results on seven public biomedical benchmarks without using heavy contextual embeddings like BERT. This includes improving BC4CHEMD to 93.72% (4.1%) gain), Species800 to 80.91% (4.6% gain), and JNLPBA to 81.29% (5.2% gain). In addition, this model is freely available within a production-grade code base as part of the open-source Spark NLP library; can scale up for training and inference in any Spark cluster; has GPU support and libraries for popular programming languages such as Python, R, Scala and Java; and can be extended to support other human languages with no code changes.

I. Introduction

Electronic health records (EHRs) are the primary source of information for clinicians tracking the care of their patients. Information fed into these systems may be found in structured fields for which values are inputted electronically (e.g. laboratory test orders or results) [1] but most of the time information in these records is unstructured making it largely inaccessible

Peer-reviewed conference papers on Spark NLP

Accurate Clinical and Biomedical Named Entity Recognition at Scale

Anonymous NAACL-HLT 2021 submission

Abstract

Named entity recognition (NER) is one of the most important building blocks of NLP tasks in the medical domain by extracting meaningful chunks from clinical notes and reports, which are then fed to downstream tasks like assertion status detection, entity resolution, relation extraction, and de-identification. Due to the growing volume of healthcare data in unstructured format, an increasingly important challenge is providing high accuracy implementations of state-of-the-art deep learning (DL) algorithms at scale. In this study, we introduce a production-grade clinical and biomedical NER algorithm based on a modified BiLSTM-CNN-Char DL architecture built on top of Apache Spark. This algorithm establishes new state-of-the-art accuracy on 7 of 8 well-known biomedical NER benchmarks and 3 clinical concept extraction challenges: 2010 i2b2/VA clinical concept extraction, 2014 n2c2 de-identification, and 2018 n2c2 medication extraction. Moreover, clinical NER models trained using this implemen-

Improving Clinical Document Understanding on COVID-19 Research with Spark NLP

Veysel Kocaman, David Talby

John Snow Labs Inc. 16192 Coastal Highway Lewes, DE, USA 19958 {veysel, david}@johnsnowlabs.com

Abstract

Following the global COVID-19 pandemic, the number of scientific papers studying the virus has grown massively, leading to increased interest in automated literate review. We present a clinical text mining system that improves on previous efforts in three ways. First, it can recognize over 100 different entity types including social determinants of health, anatomy, risk factors, and adverse events in addition to other commonly used clinical and biomedical entities. Second, the text processing pipeline includes assertion status detection, to distinguish between clinical facts that are present, absent, conditional, or about someone other than the patient. Third, the deep learning models used are more accurate than previously available, leveraging an integrated pipeline of state-of-the-art pre-trained named entity recognition models, and improving on the previous best performing benchmarks for assertion status detection. We illustrate extracting trends and insights - e.g. most frequent disorders and symptoms, and most common vital signs and EKG findings – from the COVID-19 Open Research Dataset (CORD-19). The system is built using the Spark NLP library which natively supports scaling to use distributed clusters, leveraging GPU's, configurable and reusable NLP pipelines, healthcare-specific embeddings, and the ability to train models to support new entity types or human languages with no code changes.

be found in structured fields for which values are inputted electronically (e.g. laboratory test orders or results) (Liede et al. 2015) but most of the time information in these records is unstructured making it largely inaccessible for statistical analysis (Murdoch and Detsky 2013). These records include information such as the reason for administering drugs, previous disorders of the patient or the outcome of past treatments, and they are the largest source of empirical data in biomedical research, allowing for major scientific findings in highly relevant disorders such as cancer and Alzheimer's disease (Perera et al. 2014).

A primary building block in such text mining systems is named entity recognition (NER) - which is regarded as a critical precursor for question answering, topic modelling, information retrieval, etc (Yadav and Bethard 2019). In the medical domain, NER recognizes the first meaningful chunks out of a clinical note, which are then fed down the processing pipeline as an input to subsequent downstream tasks such as clinical assertion status detection (Uzuner et al. 2011), clinical entity resolution (Tzitziyacos 2007) and de-identification of sensitive data (Uzuner, Luo, and Szolovits 2007) (see Figure 1). However, segmentation of clinical and drug entities is considered to be a difficult task in biomedical NER systems because of complex orthographic structures of named entities

NER

TRUSTED BY

Imperial College London

STANFORD UNIVERSITY

"John Snow Labs wins our best Al product or service award thanks to exceptional success turning Al research into real & dependable systems for a global community."

"An <u>open source</u> project, tool, or contribution that **significantly advances the state of data science** is recognized with this award."

"By all accounts, John Snow Labs has created **the most accurate software in history** to extract facts from unstructured text."

OFFICIALLY SUPPORTED RUNTIMES

Spark NLP & NLU

- A single unified library for all your NLP/NLU needs
- 1000+ Models,
- 200+ Languages
- 1 Line of code
- Active community on Slack and GitHub

NLP Feature	NLU / Spark NLP	spaCy	NLTK	CoreNLP	Hugging Face
Tokenization	Yes	Yes	Yes	Yes	Yes
Sentence segmentation	Yes	Yes	Yes	Yes	No
Steeming	Yes	Yes	Yes	Yes	No
Lemmatization	Yes	Yes	Yes	Yes	No
POS tagging	Yes	Yes	Yes	Yes	No
Entity recognition	Yes	Yes	Yes	Yes	Yes
Dep parser	Yes	Yes	Yes	Yes	No
Text matcher	Yes	Yes	No	No	No
Date matcher	Yes	No	No	No	No
Sentiment detector	Yes	No	Yes	Yes	Yes
Text classification	Yes	Yes	Yes	No	Yes
Spell checker	Yes	No	No	No	No
Language detector	Yes	No	No	No	No
Keyword extraction	Yes	No	No	No	No
Pretrained models	Yes	Yes	Yes	Yes	Yes
Trainable models	Yes	Yes	Yes	Yes	Yes

200+ Supported Languages

How does it work?

model= nlu.load(model)

Returns a nlu pipeline object

model.predict(data)

Returns a pandas DF

EMOTION DETECTION

nlu.load('emotion').predict('I love NLU!')

sentence_embeddings	category_sentence	category_surprise	category_sadness	category_joy	category_fear	sentence	category	id
[0.027570432052016258, -0.052647676318883896,]	0	0.012899903	0.0015578865	0.9760173	0.0095249	I love NLU!	joy	1

Clinical Word Embeddings

Clinical Glove (200d)

PubMed + PMC

ICDO Glove (200d)

PubMed + ICD10 UMLS + MIMIC III **Bio BERT**

Pubmed + PMC

Clinical BERT

Fine tuned Pubmed + PMC + Discharge summaries

Publmed

PubMed abstracts and PMC full-text articles

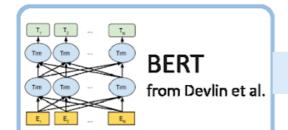
Pre-training of BioBERT

Pre-training Corpora

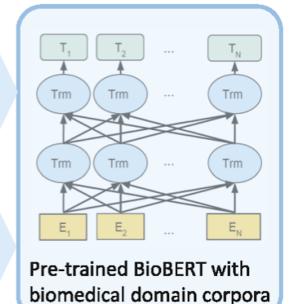
Pub Med 4.5B words

PMC 13.5B words

Weight Initialization



BioBERT Pre-training



https://www.nlm.nih.gov/bsd/difference.html

Clinical Named Entity Recognition

Pretrained NER Models in Spark NLP

```
EVIDENTIAL X
                                                     TREATMENT X
                       DURATION X
                     PROBLEM X DATE X CLINICAL_DEPT X Disease X
                    Developing_anatomic... × Pathological_formation × Organ ×
                          Multi X Tissue X
         Immaterial_anatomic... X Developing_anatomic... X Pathological_formation X
         Organ X Organism_subdivision X Cellular_component X Amino_acid X
      Anatomical_system × Gene_or_gene_product × Simple_chemical ×
              Weight X Drug_Name X Negation X Procedure X
       O2_Saturation X Route X Temperature X Procedure_Name X
                    Respiratory_Rate ×
                                      Allergenic_substance X
          Section_Name X Blood_Pressure X MEDICATION X
                                                                                     Ø •
Body_System X Professional or Occu... X Clinical_Attribute X Indicator, Reagent,... X
   Anatomical_Structure X Organism_Attribute X Food X Body_Part,_Organ,_or... X
   Medical_Device X Tissue X Disease_or_Syndrome X Chemical X
    Health_Care_Activity X Body_Location_or_Re... X Qualitative_Concept X
    Population_Group X Geographic_Area X Manufactured_Object X Mental_Process X
                  Therapeutic_or_Preve... X Research_Activity X
                  Quantitative_Concept X Spatial_Concept X Pharmacologic Subst... X
                    Cell_Component X Prokaryote X Molecular_Biology_R... X
                    Molecular Function X Fungus X
      Nucleotide_Sequence X Body_Substance X Plant X Amino_Acid,_Peptide... X
   Nucleic_Acid,_Nucle... X Biomedical_or_Denta... X Gene_or_Genome X
```

The patient was prescribed 1 capsule of Advil for 5 days. He was seen by the endocrinology service and she was discharged on 40 units of insulin glargine at night, 12 units of insulin lispro with meals, and metformin 1000 mg two times a day. It was determined that all SGLT2 inhibitors should be discontinued indefinitely fro 3 months.

Color codes: FREQUENCY, DOSAGE, DURATION, DRUG, FORM, STRENGTH,

Posology NER

No findings in urinary system, skin color is normal, brain CT and cranial checks are clear. Swollen fingers and eyes. Extensive stage small cell lung cancer. Chemotherapy with carboplatin and etoposide. Left scapular pain status post CT scan of the thorax.

Color codes: Organ, Organism_subdivision, Organism_substance, Pathological_formation,

Anatomical_system,

Anatomy NER

A . Record date : 2093-01-13 , David Hale , M.D . , Name : Hendrickson , Ora MR . # 7194334 Date : 01/13/93 PCP : Oliveira , 25 years-old , Record date : 2079-11-09 . Cocke County Baptist Hospital . 0295 Keats Street

Color codes: STREET, DOCTOR, AGE, HOSPITAL, PATIENT, DATE, MEDICALRECORD,

PHI NER

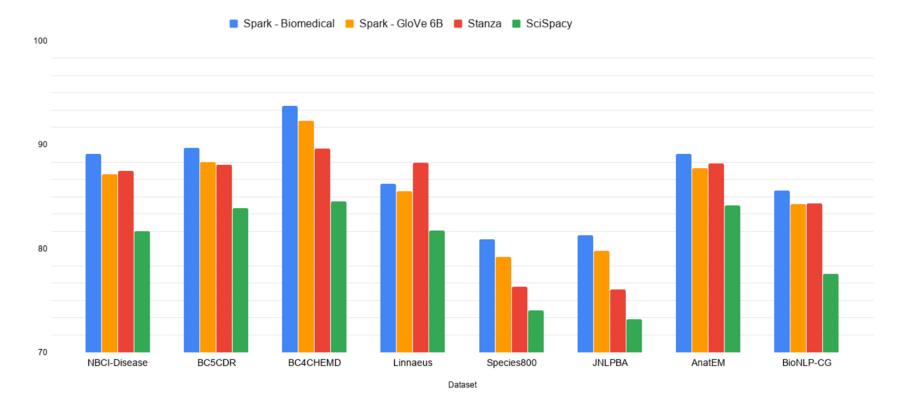
```
• • •
                                      NER_demo.py
# Extract Various entities from the medical domain
nlu.load('med ner.ade') # Drug Adverse Events
nlu.load('med_ner.anatomy')
nlu.load('med_ner.aspect_sentiment')
nlu.load('med_ner.bacterial_species')
nlu.load('med_ner.bionlp')
nlu.load('med_ner.cancer')
nlu.load('med_ner.cellular')
nlu.load('med_ner.chemicals')
nlu.load('med ner.chemprot')
nlu.load('med ner.clinical')
nlu.load('med_ner.diseases')
nlu.load('med_ner.drugs')
nlu.load('med_ner.events_healthcre')
nlu.load('med_ner.human_phenotype')
nlu.load('med_ner.measurements')
nlu.load('med_ner.medmentions')
nlu.load('med ner.posology')
nlu.load('med ner.radiology')
nlu.load('med ner.risk factors')
nlu.load('med_ner.i2b2')
nlu.load('med_ner.tumour')
```

Spark NLP NerDL

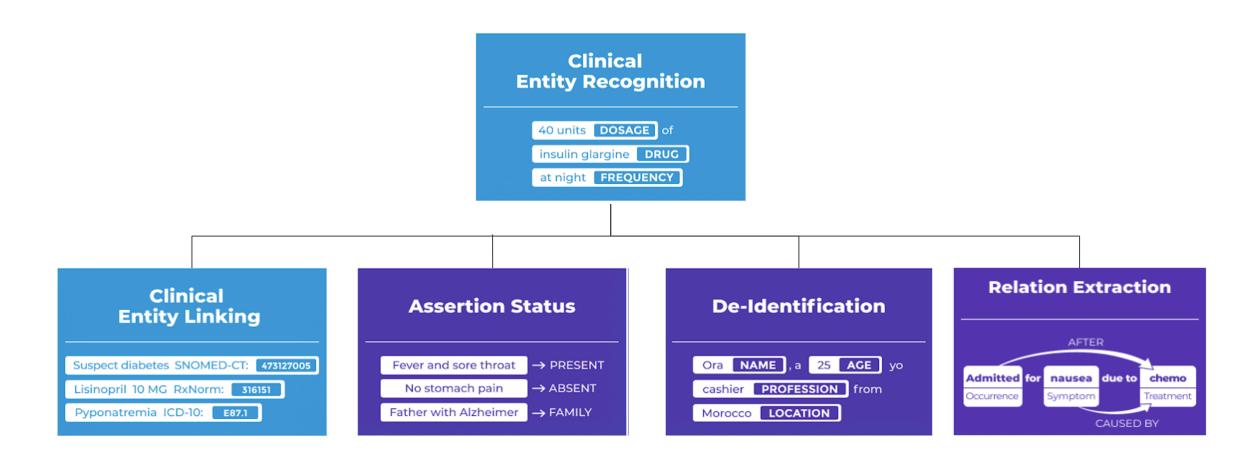
The best NER
score in
production

Dataset	Entities	Spark - Biomedical	Spark - GloVe 6B	Stanza	SciSpacy
NBCI-Disease	Disease	89.13	87.19	87.49	81.65
BC5CDR	Chemical, Disease	89.73	88.32	88.08	83.92
BC4CHEMD	Chemical	93.72	92.32	89.65	84.55
Linnaeus	Species	86.26	85.51	88.27	81.74
Species800	Species	80.91	79.22	76.35	74.06
JNLPBA	5 types in cellular	81.29	79.78	76.09	73.21
AnatEM	Anatomy	89.13	87.74	88.18	84.14
BioNLP13-CG	16 types in Cancer Genetics	85.58	84.3	84.34	77.6

Benchmarks on BioMedical NER Datasets



NER in Healthcare

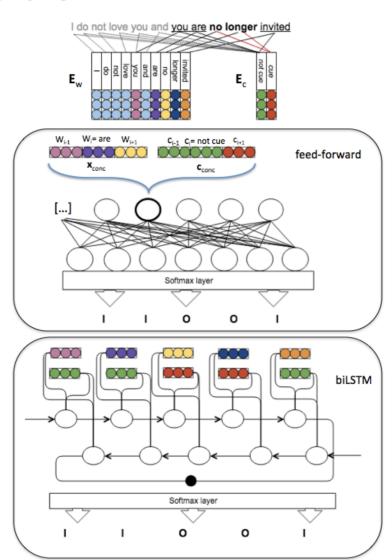


Clinical Assertion Model

Prescribing sick days due to diagnosis of influenza .	Present
41 yo man with CRFs of DM Type II, high cholesterol, smoking history, family hx, HTN p/w episodes of atypical CP x 1 week , with rest and exertion.	Conditional
Jane's RIDT came back clean.	Absent
Jane is at risk for flu if she's not vaccinated.	Hypothetical
There was a dense hemianopsia on the left side.	Present

F-Score	Dataset	Task
94.17%	4 th i2b2/VA	Disease & problem norm.

"Neural Networks For Negation Scope Detection", Fancellu et al., In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, 2016.



```
# Assert statuses of detected entities
nlu.load('<medical_ner_model> assert').predict('The patient has no cancer')
```

Entity Resolution

Tobramycin (D014031)

Gentamicins (D005839)

We observed patients treated with gentamicin sulfate

or tobramycin sulfate for the development of

aminoglycoside-related renal failure. Gentamicin sulfate

decreased renal function more frequently than

tobramycin sulfate.

Renal Insufficiency (D051437)

Aminoglycosides (D000617)

"CNN-based ranking for biomedical entity normalization".

Li et al., *BMC Bioinformatics*, October 2017.

F-Score	Dataset	Task
90.30%	ShARe / CLEF	Disease & problem norm.
92.29%	NCBI	Disease norm. in literature

```
|description
l codes
|17473003 |Cecotomy
|17473003 |Cecotomy (procedure)
304587000 Excision of colonic pouch
304587000 Excision of colonic pouch (procedure)
87279008 Excision of lesion of colon
174117007 Excision of lesion of colon NEC
174117007 Excision of lesion of colon NEC (procedure)
87279008 Excision of lesion of colon (procedure)
276190007|Ileocolic resection
276190007|Ileocolic resection (procedure)
|43075005 |Partial resection of colon
|43075005 |Partial resection of colon (procedure)
428305005 History of partial resection of colon (situation)
428305005 History of partial resection of colon
444165004 Partial resection of colon and resection of terminal
738552004 Partial resection of colon with stoma (procedure)
738552004 Partial resection of colon with stoma
84952009 |Resection of colon for interposition
84952009 Resection of colon for interposition (procedure)
|445884009|Wedge resection of colon
only showing top 20 rows
```

Assigns a **ICD10** (International Classification of Diseases version 10) code to chunks identified as "PROBLEMS" by the NER Clinical Model

Entity Resolution - RxNorm

advil **DRUG** the patient was prescribed 1 capsule **DRUG** of for 5 days **DURATION** . he was seen by the endocrinology service and she was discharged 40 units **DRUG** of insulin glargine **DRUG** at night **FREQUENCY** 12 units **DRUG** of insulin lispro **DRUG** with meals **FREQUENCY** , and metformin 1000 mg DRUG . it was determined that all sglt2 inhibitors **DRUG** should be discontinued indefinitely . two times a day **FREQUENCY**

advil: DRUG

distance	description	rxnorm_code	
0	advil	153010	0
0.0417	advate	669348	1

insulin lispro: DRUG

distance	description	rxnorm_code	
0	insulin lispro	86009	0
0.0743	insulin lispro injectable product	1157461	1

insulin glargine: DRUG

	rxnorm_code	description	distance
Θ	274783	insulin glargine	0.0000
1	1157459	insulin glargine injectable product	0.0653

metformin 1000 mg: DRUG

	rxnorm_code	description	distance
0	316255	metformin 1000 mg	0.0000
1	860995	metformin hydrochloride 1000 mg	0.0445

Entity Resolution - Snomed / ICD-10

a 28-year-old female with a history of gestational diabetes mellitus **PROBLEM** diagnosed eight years prior to presentation and subsequent type two diabetes mellitus **PROBLEM** (t2dm **PROBLEM**), one prior episode of htg-induced pancreatitis **PROBLEM** three years prior to presentation , associated with an acute hepatitis **PROBLEM** , and obesity **PROBLEM** with a body mass index **PROBLEM** (bmi) of 33.5 kg/m2 , presented with a one-week history of polyuria **PROBLEM** , polydipsia **PROBLEM** , poor appetite **PROBLEM** , and vomiting **PROBLEM** .

gestational diabetes mellitus : PROBLEM

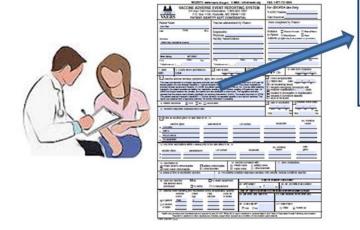
	snomed_code	description	distance	athena_concept_id	domain_id	concept_class_id	ICD10CM_mapping
0	11687002	gestational diabetes mellitus	0.0000	4024659	Condition	Clinical Finding	024.429, 024.439, 024.414, 024.419, 024.4, 024.410
1	40791000119105	postpartum gestational diabetes mellitus	0.0423	45757789	Condition	Clinical Finding	024.4, 024.439

obesity: PROBLEM

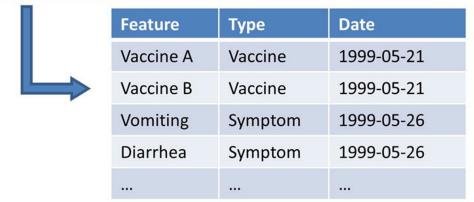
	snomed_code	description	distance	athena_concept_id	domain_id	concept_class_id	ICD10CM_mapping
0	414916001	obesity	0.0000	433736	Condition	Clinical Finding	E66.9
1	414915002	obese	0.0264	4215968	Observation	Clinical Finding	Z68.41, E66.9, E66.8

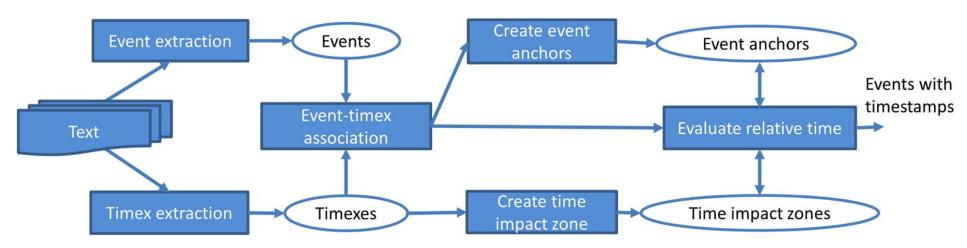
```
resolve_demo.py
## Resolve entities to various International billable codes and standards
nlu.load('<medical_ner_model> resolve.cpt')
nlu.load('<medical_ner_model> resolve.hcc')
nlu.load('<medical_ner_model>
                              resolve.10cm')
nlu.load('<medical_ner_model>
                              resolve.10pcs')
nlu.load('<medical ner model>
                              resolve.icdo')
nlu.load('<medical ner model>
                              resolve.rxciui')
                              resolve.rxnorm')
nlu.load('<medical ner model>
nlu.load('<medical_ner_model>
                              resolve.snomed')
nlu.load('<medical_ner_model>
                              resolve_chunk.athena')
```

Relation Extraction



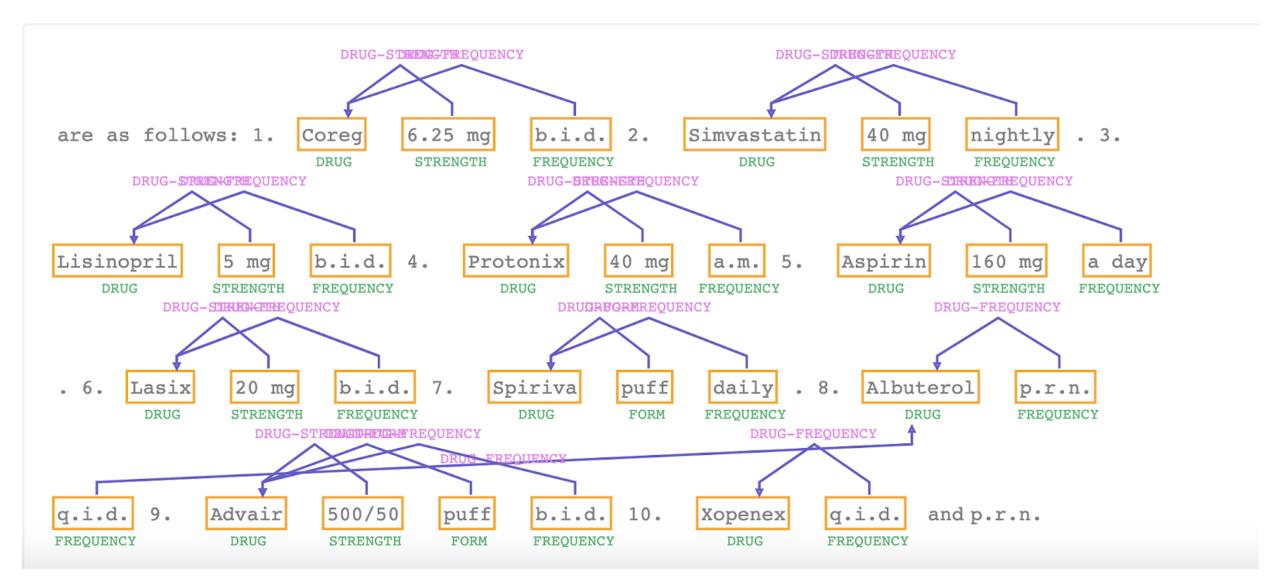
On 5/21/99, the infant received her 1st dose of vaccine A and her 2nd injection of vaccine B. The infant began vomiting and having diarrhea 5 days later. She was taken to the local ER where evaluation was ""non-diagnostic""...





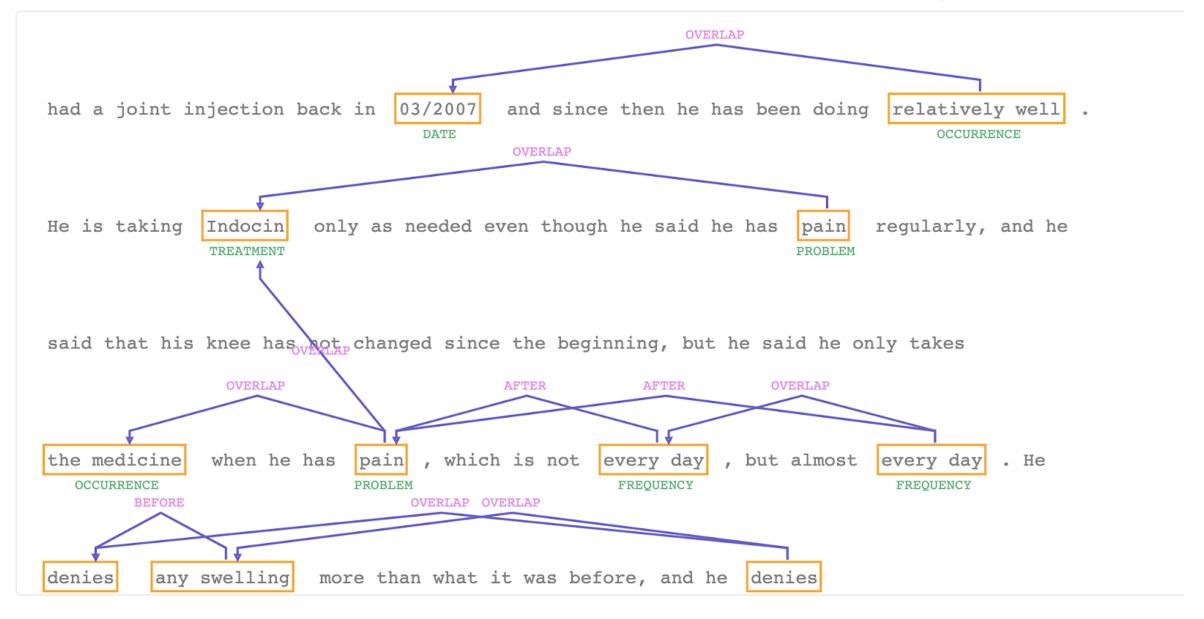
Relation Extraction

Posology



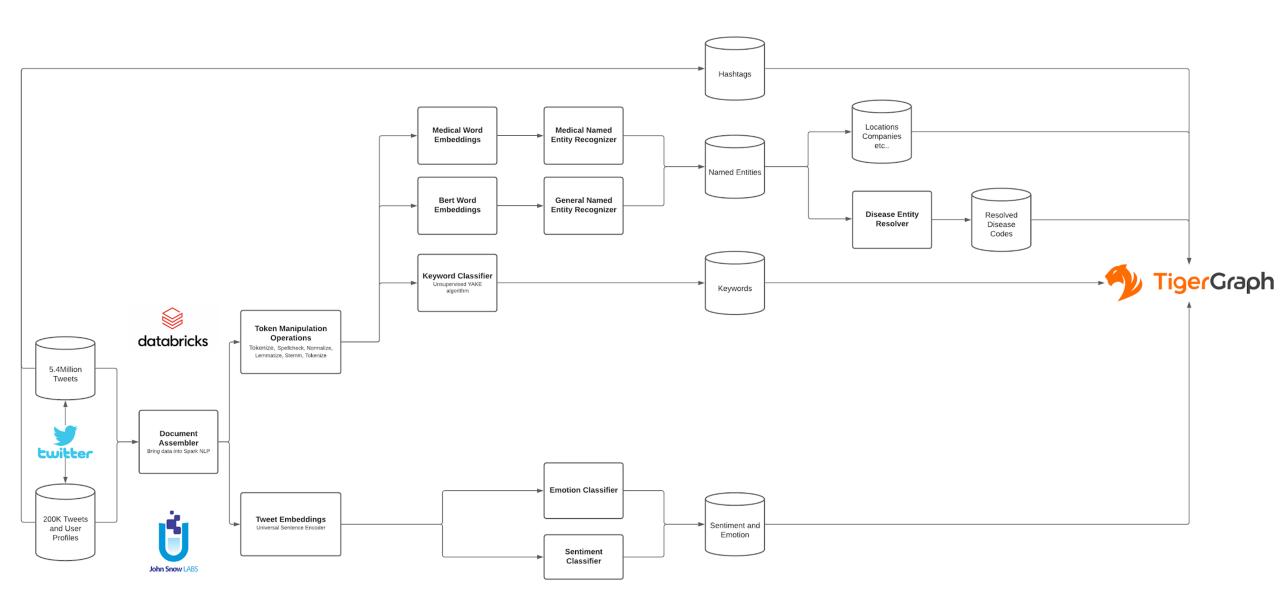
Relation Extraction

Temporal Events



```
# Extract relation between detected entities
nlu.load('<medical_ner_model> relation.bodypart')
nlu.load('<medical_ner_model> relation.chemprot')
nlu.load('<medical_ner_model> relation.clinical')
nlu.load('<medical_ner_model> relation.date')
nlu.load('<medical_ner_model> relation.drug_drug_interaction')
nlu.load('<medical_ner_model> relation.humen_phenotype_gene')
nlu.load('<medical_ner_model> relation.temporal_events')
```

The NLU COVID data extraction for Graph NLU



Demo part 1

https://github.com/JohnSnowLabs/nlu/tree/master/examples/webinars_conferences_etc/graph_ai_summit

Demo - Deep Analytics with graph

Spark NLP and NLU: Apache License 2.0

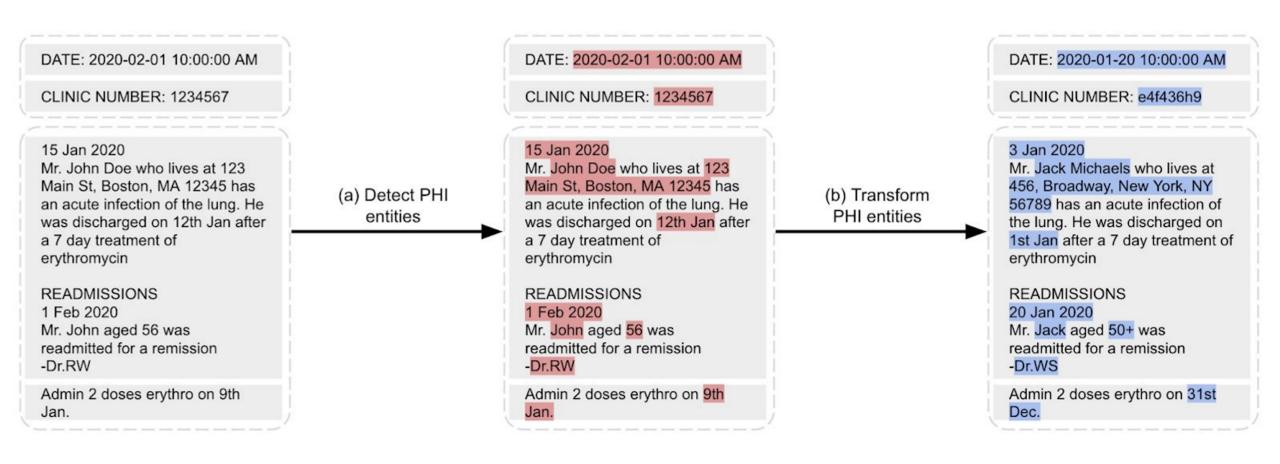
```
nlu.load('classify.sentiment').predict('I love NLU and Python WebDev Conf 2021!')
nlu.load('classify.sentiment.imdb').predict('The Matrix was a pretty good movie')
nlu.load('classify.sentiment.twitter').predict('@elonmusk Tesla stock price is too high imo')
nlu.load('en.translate_to.zh').predict('NLU can translate between 200 languages!')
nlu.load('spell').predict('I liek to live dangertus!')
nlu.load('ner').predict('Donald Trump and John Biden dont share many oppinions')
nlu.load('yake').predict('Weights extract keywords withouth requiring weights!')
nlu.load('classify.emotion').predict('He was suprised by the diversity of NLU')
nlu.load('classify.spam').predict('Hello you are the heir to a 100 Million fortune!')
nlu.load('classify.fakenews').predict('Unicorns landed on mars!')
nlu.load('classify.sarcasm').predict('love the teachers who give exams the day after halloween')
nlu.load('en.classify.question').predict('How expensive is the Watch?')
nlu.load('en.classify.toxic').predict('You are to stupid')
nlu.load('classify.cyberbullying').predict('Women belong in the kitchen!') #sorry
nlu.load('bert').predict('BERTolgy Word embeddings!')
nlu.load('bert elmo albert glove').predict('Multiple BERTolgy Word embeddings!')
nlu.load('embed_sentence.bert ').predict('BERTolgy Sentence embeddings!')
nlu.load('lemmatize').predict('Get me the lemmatized version of a string')
nlu.load('normalize').predict('Get me the lemmatized version of a string')
nlu.load('clean').predict('Get me the lemmatized version of a string')
nlu.load('pos').predict('Extract Parts of Speech')
```

- Tokenization
- Sentence Detector
- Stop Words Removal
- Normalizer
- Stemmer
- Lemmatizer
- NGrams
- Regex Matching
- Text Matching
- Chunking
- Date Matcher
- Part-of-speech tagging
- Dependency parsing
- **Sentiment** Detection (ML models)
- Spell Checker (ML and DL models)
- Word **Embeddings**

- **BERT** Embeddings
- **ELMO** Embeddings
- ALBERT Embeddings
- XLNet Embeddings
- Universal Sentence Encoder
- **BERT** Sentence Embeddings
- Sentence Embeddings
- Chunk Embeddings
- Unsupervised **keywords extraction**
- Language Detection & Identification
- Multi-class Text Classification
- Multi-label Text Classification
- Multi-class Sentiment Analysis
- Named entity recognition
- Easy TensorFlow integration
- Full integration with Spark ML functions
- +250 pre-trained models in 46 languages
- +90 pre-trained pipelines in 13 languages

De-Identification

* Identifies potential pieces of content with personal information about patients and remove them by replacing with semantic tags.



De-Identification

* Identifies potential pieces of content with personal information about patients and remove them by replacing with semantic tags.

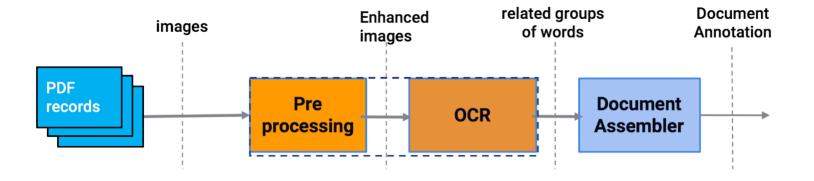
```
Record date: 2093-01-13 DATE .
                                David Hale DOCTOR , M.D., Name:
                                                                Hendrickson, Ora PATIENT MR.#
                                                                                                7194334 MEDICALRECORD
                                             25 AGE years-old, Record date: 2079-11-09 DATE.
                           Oliveira DOCTOR
Date: 01/13/93 DATE PCP:
                                                                                                Cocke County Baptist
Hospital HOSPITAL
                   0295 Keats Street STREET . Phone
                                                   (302) 786-5227 PHONE
```

	sentence	deidentified
0	Α.	Α.
1	Record date: 2093-01-13, David Hale, M.D.	Record date : <date> , <name> , M.D .</name></date>
2	, Name : Hendrickson , Ora MR .	, Name : <name> MR .</name>
3	# 7194334 Date : 01/13/93 PCP : Oliveira , 25 years-old , Record date : 2079-11-09 .	# <id> Date : <date> PCP : <name> , <age> years-old , Record date : <date> .</date></age></name></date></id>
4	Cocke County Baptist Hospital .	<location> .</location>
5	0295 Keats Street.	<location>.</location>
6	Phone (302) 786-5227.	Phone <contact>.</contact>

```
deid_demo.py

# De-Identify and anonymize detected entities
nlu.load('<medical_ner_model> en.med_ner.deid')
```

Spark OCR



History of Present Illness

Homer Simpson is a(n) 72 year old male with history of coronary artery disease, cardiomyopathy, diabetes type 2, hypertension, chronic kidney disease, and other comorbidities. He presents with rectal bleeding in the last two weeks. No dyspnea or cough. No chest pain.

CONDITION ON TRANSFER: Stable but guarded. The patient is pain-free at this time.

MEDICATIONS ON TRANSFER:

- 1. Aspirin 325 mg once a day.
- Metoprolol 50 mg once a day, but we have had to hold it because of relative bradycardia which he apparently has a history of.
- 3. Nexium 40 mg once a day.
- Zocor 40 mg once a day, and there is a fasting lipid profile pending at the time of this dictation.
 I see that his LDL was 136 on May 3, 2002.
- 5. Plavix 600 mg p.o. x1 which I am giving him tonight.

Other medical history is inclusive for obstructive sleep apnea for which he is unable to tolerate positive pressure ventilation, GERD, arthritis

DISPOSITION: The patient and his wife have requested and are agreeable with transfer to Medical Center, and we are enclosing the CD ROM of his images.

History of Present Illness

Homer Simpson is a(n) 72 year old male with history of coronary artery disease, cardiomyopathy, diabetes type 2, hypertension, chronic kidney disease, and other comorbidities. He presents with rectal bleeding in the last two weeks. No dyspnea or cough. No chest pain.

CONDITION ON TRANSFER: Stable but guarded. The patient is pain-free at this time.

MEDICATIONS ON TRANSFER:

- 1. Aspirin 325 mg once a day.
- 2. Metoprolol 50 mg once a day, but we have had to hold it because of relative bradycardia which he apparently has a history of.
- 3. Nexium 40 mg once a day.
- 4. Zocor 40 mg once a day, and there is a fasting lipid profile pending at the time of this dictation. I see that his LDL was 136 on May 3, 2002.
- 5. Plavix 600 mg p.o. x1 which I am giving him tonight.

Other medical history is inclusive for obstructive sleep apnea for which he is unable to tolerate positive pressure ventilation, GERD, arthritis

DISPOSITION: The patient and his wife have requested and are agreeable with transfer to Medical Center, and we are enclosing the CD ROM of his images.

500

1000

1500

2000

2500

500

1000

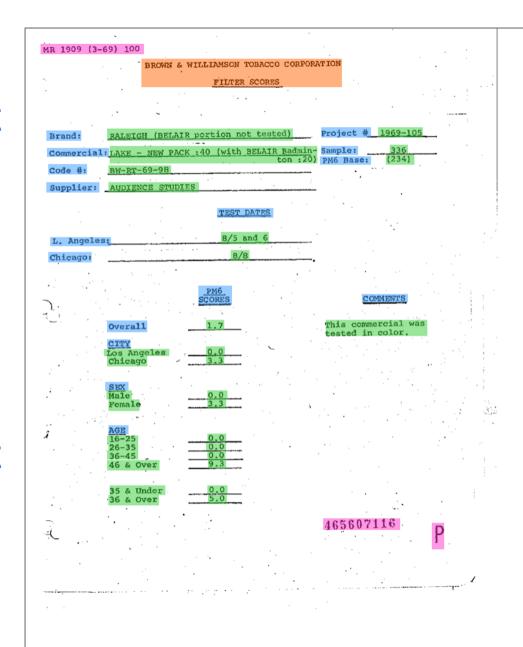
1500

2000

2500

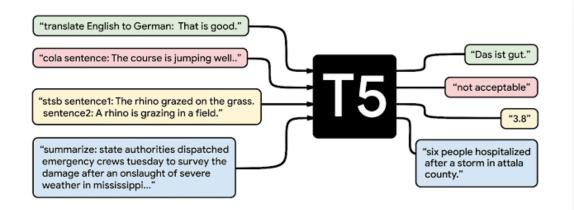
Visual Document Classifier

Visual Document NER



SPORTS MARKETING ENTERPRISES DOCUMENT CLEARANCE SHEET

Date Routed:	January 11, 1994	Contract No. 401	1 00 00		
Contract Subjec	t: Joe's Place Exhibits				
Company	SPEVCO, INC.	Brand(s) Camel/Winston			
Total Contract C	\$1,340,000.00	Current Year Cost	1994-1995		
Brief Description	2 Joe's Place Exhil Super Bike Events	bits for use at Winston Cup, Winst	on Drag and Camel		
G/L Code:		Program Budget Code			
	NAME	SIGNATURE	DATE		
Originator	Michael Wright				
Manager	John Powell	B. J. Powell	1-11-94		
REVIEW ROUT	ING	SIGNATURE	DATE		
Insurance					
Law					
FS - Marketing					
REVISIONS TO (Other than Term,	SHELL	PAGE(S)	SECTION(S)		
Compensation or Job					
* Sr. Manager * Director - (G	(B. J. Powell)		<u>.</u>		
** Sr. VP 7	Γ. W. Robertson	•			
Return To:	MARY SEAGRAVES Ext. 1485	SME	13 Plaza 30		
* UP TO AND IN **OVER \$25,000	ICLUDING \$25,000		Revised 10/26/92		



Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer

- 1. Text summarization
- 2. Question answering
- 3. Translation
- 4. Sentiment analysis
- 5. Natural Language inference
- 6. Coreference resolution
- 7. Sentence Completion
- 8. Word sense disambiguation

<pre># Closed book Question Answering nlu.load('en.t5').predict('what is the capital of Germany?') # >>> Berlin # Open Book Question answering nlu.load('en.t5').predict('Who is president of Nigeria?') # >>> Muhammadu Buhari</pre>
<pre># Open book Question Answering context = 'Peters last week was terrible! He had an accident and broke his leg while skiing!' question1 = 'Why was peters week so bad?' question2 = 'How did peter broke his leg?' nlu.load('answer_question').predict(question1 + context) # >>> broke his leg nlu.load('answer_question').predict(question2 + context) # >>> skiing</pre>
<pre># Big T5 model for Summarization, Sentiment, Text Similarity and other SQUAD/GLUE tasks pipe = nlu.load('t5') pipe['t5'].settask('summarize') pipe.predict(long_text)</pre>

Every T5 Task with explanation:					
Task Name	Explanation				
1.CoLA	Classify if a sentence is grammatically correct				
2.RTE	Classify whether a statement can be deducted from a sentence				
3.MNLI	Classify for a hypothesis and premise whether they contradict or contradict each other or neither of both (3 class).				
4.MRPC	Classify whether a pair of sentences is a re-phrasing of each other (semantically equivalent)				
5.QNLI	Classify whether the answer to a question can be deducted from an answer candidate.				
6.QQP	Classify whether a pair of questions is a re-phrasing of each other (semantically equivalent)				
7.SST2	Classify the sentiment of a sentence as positive or negative				
8.STSB	Classify the sentiment of a sentence on a scale from 1 to 5 (21 Sentiment classes)				
9.CB	Classify for a premise and a hypothesis whether they contradict each other or not (binary).				
10.COPA	Classify for a question, premise, and 2 choices which choice the correct choice is (binary).				
11.MultiRc	Classify for a question, a paragraph of text, and an answer candidate, if the answer is correct (binary),				
12.WiC	Classify for a pair of sentences and a disambigous word if the word has the same meaning in both sentences.				
13.WSC/DPR	Predict for an ambiguous pronoun in a sentence what it is referring to.				
14.Summarization	Summarize text into a shorter representation.				
15.SQuAD	Answer a question for a given context.				
16.WMT1.	Translate English to German				
17.WMT2.	Translate English to French				
18.WMT3.	Translate English to Romanian				

Translate between **200+ Languages**With Marian: Fast Neural Machine Translation in C++

MARIANNMT

Fast Neural Machine Translation in C++


```
# Use ISO standards for the languages
nlu.load('<start_language>.translate_to.<target_language>')

#Translate Turkish to English:
nlu.load('tr.translate_to.en')

#Translate English to French:
nlu.load('en.translate_to.fr')

#Translate French to Hebrew
nlu.load('fr.translate_to.he')`

#Translate English to German
nlu.load('en.translate_to.de')`
```

109 Languages supported by Languageagnostic BERT Sentence Embedding (LABSE)

Train in **1 Language**, classify in **100 different languages** correct

```
# Binary Class Classifier, 2 classes
nlu.load('xx.embed_sentence.labse train.sentiment').fit(train_df).predict(test_df)

# Multi Class Classifier, N classes
nlu.load('xx.embed_sentence.labse train.classifier').fit(train_df).predict(test_df)

# Multi Class Classifier with multiple labels example (i.e. Hashtags)

# N classes, where one row can be assigned up to N labels
nlu.load('xx.embed_sentence.labse train.multi_classifier').fit(train_df).predict(test_df)
```

ISO	NAME	ISO	NAME	ISO	NAME
af	AFRIKAANS	ht	HAITIAN_CREOLE	pt	PORTUGUESE
am	AMHARIC	hu	HUNGARIAN	ro	ROMANIAN
ar	ARABIC	hy	ARMENIAN	ru	RUSSIAN
as	ASSAMESE	id	INDONESIAN	rw	KINYARWANDA
az	AZERBAIJANI	ig	IGBO	si	SINHALESE
be	BELARUSIAN	is	ICELANDIC	sk	SLOVAK
bg	BULGARIAN	it	ITALIAN	sl	SLOVENIAN
bn	BENGALI	ja	Japanese	sm	SAMOAN
bo	TIBETAN	jv	JAVANESE	sn	SHONA
bs	BOSNIAN	ka	GEORGIAN	so	SOMALI
ca	CATALAN	kk	KAZAKH	sq	ALBANIAN
ceb	CEBUANO	km	KHMER	Sr	SERBIAN
co	CORSICAN	kn	KANNADA	st	SESOTHO
cs	CZECH	ko	KOREAN	su	SUNDANESE
cy	WELSH	ku	KURDISH	sv	SWEDISH
da	DANISH	ky	KYRGYZ	sw	SWAHILI
de	GERMAN	la	LATIN	ta	TAMIL
el	GREEK	lb	LUXEMBOURGISH	te	TELUGU
en	ENGLISH	lo	LAOTHIAN	tg	TAJIK
eo	ESPERANTO	lt	LITHUANIAN	th	THAI
cs	SPANISH	lv	LATVIAN	tk	TURKMEN
et	ESTONIAN	mg	MALAGASY	tl	TAGALOG
eu	BASQUE	mi	MAORI	tr	TURKISH
fa	PERSIAN	mk	MACEDONIAN	tt	TATAR
fi	FINNISH	ml	MALAYALAM	ug	UIGHUR
fr	FRENCH	mn	MONGOLIAN	uk	UKRAINIAN
fy	FRISIAN	mr	MARATHI	ur	URDU
ga	IRISH	ms	MALAY	uz	UZBEK
gd	SCOTS_GAELIC	mt	MALTESE	vi	VIETNAMESE
gl	GALICIAN	my	BURMESE	wo	WOLOF
gu	GUJARATI	ne	NEPALI	xh	XHOSA
ha	HAUSA	nl	DUTCH	yi	YIDDISH
haw	HAWAIIAN	no	NORWEGIAN	yo	YORUBA
he	HEBREW	ny	NYANJA	zh	Chinese
hi	HINDI	or	ORIYA	zu	ZULU
hmn	HMONG	pa	PUNJABI		
hr	CROATIAN	pl	POLISH		

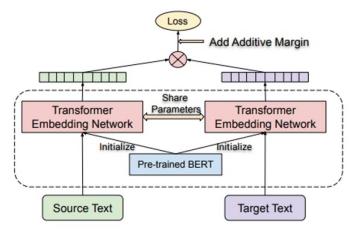


Figure 1: Dual encoder model with BERT based encoding modules.

Demo - Deep Analytics with graph

Types of Graph Databases

Semantic (RDF) Knowledge Graph:

- Collection of facts (RDF triples)
- Ontology to model concepts & rules
- Pattern matching
- Logical inference
- Standards-based

Transactional

Analytics

Property Graphs:

- Node and Edge objects
- Higher performance for queries, transactions, and advanced analytics
- Pattern matching
- Schema-free or Schemabased
- Schemas allows application-specific tuning

TigerGraph is a High-Performance and Scalable Property Graph, for both Analytics & Transactions.

FIBO

The Financial Industry Business Ontology (FIBO) defines the sets of things that are of interest in financial business applications and the ways that those things can relate to one another.

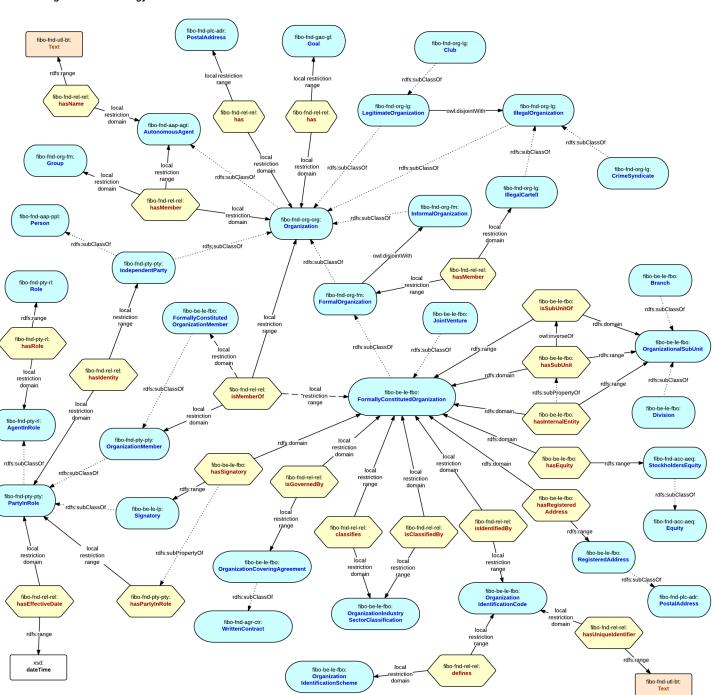
<u>De</u>

- ▼ Business Entities
 - > Corporations
 - > Functional Entities
 - Government Entities
 - > Legal Entities
 - Ownership and Control
 - > Partnerships
 - Private Limited Companies
 - > Sole Proprietorships
 - > Trusts
- > Business Process Domain
- > Corporate Actions and Events

Domain

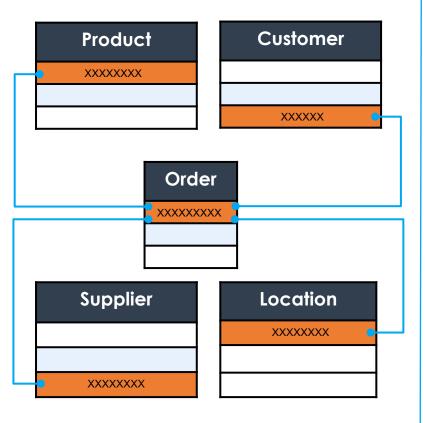
- > Derivatives Domain
- > Financial Business and Commerce
- > Foundations
- > Funds Module
- > Indices and Indicators
- > Loans
- > Market Data Domain
- > Securities

FIBO Organization Ontology Model v1.0



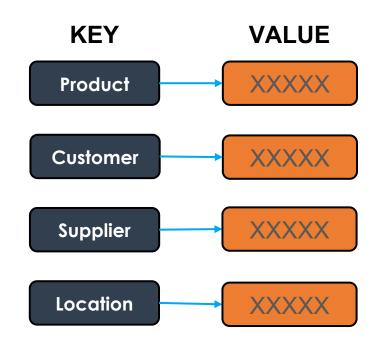
The Evolution of Databases

Relational Database



- Rigid schema
- High performance for transactions
- Poor performance for deep analytics

Key-Value Database



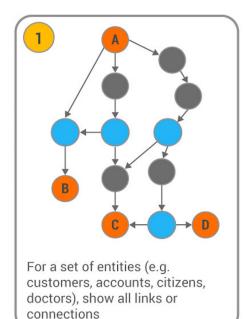
- Highly fluid schema/no schema
- High performance for simple transactions
- Poor performance deep analytics

Graph Database

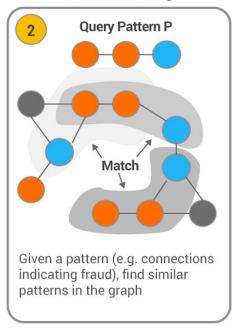
- Flexible schema
- High performance for complex transactions
- High performance for deep analytics

7 Key Data Science Capabilities Powered By a Native Parallel Graph

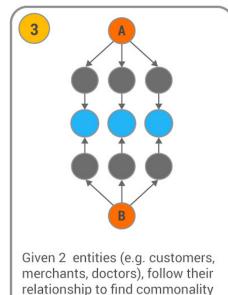
Deep Link Analysis



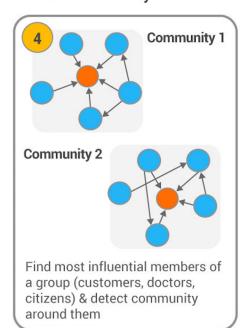
Multi-dimensional Entity & Pattern Matching



Relational Commonality Discovery & Computation



Hub & Community Detection



Analyze changes in entities & relationships with location data

6 Temporal (Time-Series) Graph Analysis

Analyze changes in entities & relationships over time

7 Machine Learning Feature Generation & Explainable Al

Extract graph-based features to feed as training data for machine learning; Power Explainable AI

Thank You

Christian Kasim Loan
Senior Data Scientist

- Distributed AI Lab(DAI), Daimler-Lab, CKL-IT (Consulting Company) Founder
- 10+ years, Architected and implemented various cloud agnostic big data systems and frameworks
- Creator of the NLU library
- Email: christian@johnsnowlabs.com

Abhishek Mehta
Director of Field Engineering

- McKinsey, Bloomberg, Cisco & Dabizmo (NLP Startup) Founder
- 15+ years designing and implementing complex analytics solutions for Fortune 100 companies
- Patents in NLP spanning Conceptunary Ontology Design, Language Pattern Recognition, and Conversion
- Email: abhi@tigergraph.com

